2025 Vol. 45, No. 3
Article Contents

MA Haiyue, BAO Rui. Research topics about RPO-14C and application in organic geochemistry[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 189-199. doi: 10.16562/j.cnki.0256-1492.2024010802
Citation: MA Haiyue, BAO Rui. Research topics about RPO-14C and application in organic geochemistry[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 189-199. doi: 10.16562/j.cnki.0256-1492.2024010802

Research topics about RPO-14C and application in organic geochemistry

More Information
  • The analysis and characterization of organic carbon properties based on thermal stability is a widely-used method in studying the evolution and cycling of organic carbon in the environment. Ramped pyrolysis/oxidation (RPO)-14C technology is currently at the forefront of organic geochemistry research and is an effective approach for studying the burial and preservation of organic carbon in sediments. At present, the improvement and development of RPO-14C technology has provided a new tool for understanding the organic carbon conversion mechanism in organic geochemistry. Therefore, it is necessary to summarize systematically the progress and research significance of RPO-14C technology. In this paper, we introduced the test method and basic principle of RPO-14C analysis, described the details in device of ramped pyrolysis/oxidation and 14C analysis equipment, proposed technical improvement including device modification and temperature control, and pointed out the extension of combined use with different methods for analysis. In addition, we reviewed its applications in the research into sediments on the topics of: the mechanism of organic carbon transformation and preservation, the advancement in sediment chronology, and the tracing of environmental pollution recorded in sediments. The processes from generation, migration, transformation, to burial of sediment organic carbon in natural environment can be reconstructed with the help of efficient separation based on pyrolysis characteristics, to invert and assess the organic carbon cycle mechanism and carbon sink pattern on a global scale. This study provided an overview of the application potential and future directions of RPO-14C technology in characterizing marine organic carbon to inspire future research in various fields.

  • 加载中
  • [1] 包锐. “碳中和”目标背景下我国海洋碳汇与碳年龄的思考[J]. 中国海洋大学学报:自然科学版, 2023, 53(4):1-7

    Google Scholar

    BAO Rui. Evaluating the carbon sink in Chinese marginal seas in the context of carbon neutrality goals: Insight from carbon ages[J]. Periodical of Ocean University of China, 2023, 53(4):1-7.]

    Google Scholar

    [2] Gillett N P, Kirchmeier-Young M, Ribes A, et al. Constraining human contributions to observed warming since the pre-industrial period[J]. Nature Climate Change, 2021, 11(3):207-212. doi: 10.1038/s41558-020-00965-9

    CrossRef Google Scholar

    [3] Johnson K S, Bif M B. Constraint on net primary productivity of the global ocean by Argo oxygen measurements[J]. Nature Geoscience, 2021, 14(10):769-774. doi: 10.1038/s41561-021-00807-z

    CrossRef Google Scholar

    [4] 焦念志, 梁彦韬, 张永雨, 等. 中国海及邻近区域碳库与通量综合分析[J]. 中国科学: 地球科学, 2018, 48(11): 1393-1421

    Google Scholar

    JIAO Nianzhi, LIANG Yantao, ZHANG Yongyu, et al. Carbon pools and fluxes in the China seas and adjacent oceans[J]. Science China Earth Sciences, 2018, 61(11): 1535-1563.]

    Google Scholar

    [5] Hansell D A, Carlson C A, Repeta D J, et al. Dissolved organic matter in the ocean: a controversy stimulates new insights[J]. Oceanography, 2009, 22(4):202-211. doi: 10.5670/oceanog.2009.109

    CrossRef Google Scholar

    [6] Cai W J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3:123-145. doi: 10.1146/annurev-marine-120709-142723

    CrossRef Google Scholar

    [7] Jiao N Z, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8):593-599. doi: 10.1038/nrmicro2386

    CrossRef Google Scholar

    [8] Hansell D A. Recalcitrant dissolved organic carbon fractions[J]. Annual Review of Marine Science, 2013, 5:421-445. doi: 10.1146/annurev-marine-120710-100757

    CrossRef Google Scholar

    [9] 赵美训, 于蒙, 张海龙, 等. 单体分子放射性碳同位素分析在海洋科学及环境科学研究中的应用[J]. 海洋学报, 2014, 36(4):1-10

    Google Scholar

    ZHAO Meixun, YU Meng, ZHANG Hailong, et al. Applications of compound-specific radiocarbon analysis in oceanography and environmental science[J]. Acta Oceanologica Sinica, 2014, 36(4):1-10.]

    Google Scholar

    [10] Bao R, McIntyre C, Zhao M X, et al. Widespread dispersal and aging of organic carbon in shallow marginal seas[J]. Geology, 2016, 44(10):791-794. doi: 10.1130/G37948.1

    CrossRef Google Scholar

    [11] Stoner S W, Schrumpf M, Hoyt A, et al. How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter[J]. Biogeosciences, 2023, 20(15):3151-3163. doi: 10.5194/bg-20-3151-2023

    CrossRef Google Scholar

    [12] Masiello C A, Druffel E R M, Currie L A. Radiocarbon measurements of black carbon in aerosols and ocean sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(6):1025-1036. doi: 10.1016/S0016-7037(01)00831-6

    CrossRef Google Scholar

    [13] 张延, 高燕, 张旸, 等. Rock-Eval热分解法及其在土壤有机碳研究中的应用[J]. 土壤与作物, 2022, 11(3):282-289

    Google Scholar

    ZHANG Yan, GAO Yan, ZHANG Yang, et al. Rock-Eval thermal analysis method for soil organic carbon measurement-a review[J]. Soils and Crops, 2022, 11(3):282-289.]

    Google Scholar

    [14] Rosenheim B E, Day M B, Domack E, et al. Antarctic sediment chronology by programmed-temperature pyrolysis: methodology and data treatment[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4):Q04005.

    Google Scholar

    [15] Ghazi L. Characterizing organic carbon with ramped pyrolysis oxidation[J]. Nature Reviews Earth & Environment, 2022, 3(3):162.

    Google Scholar

    [16] Druffel E R M, Beaupré S R, Grotheer H, et al. Marine organic carbon and radiocarbon-present and future challenges[J]. Radiocarbon, 2022, 64(4):705-721. doi: 10.1017/RDC.2021.105

    CrossRef Google Scholar

    [17] Barrett G T, Keaveney E, Reimer P J, et al. Ramped pyroxidation radiocarbon dating of a preservative contaminated early medieval wooden bowl[J]. Journal of Cultural Heritage, 2021, 50:150-162. doi: 10.1016/j.culher.2021.05.003

    CrossRef Google Scholar

    [18] Hemingway J D, Galy V V, Gagnon A R, et al. Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS[J]. Radiocarbon, 2017, 59(1):179-193. doi: 10.1017/RDC.2017.3

    CrossRef Google Scholar

    [19] Fernandez A, Santos G M, Williams E K, et al. Blank corrections for ramped pyrolysis radiocarbon dating of sedimentary and soil organic carbon[J]. Analytical Chemistry, 2014, 86(24):12085-12092. doi: 10.1021/ac502874j

    CrossRef Google Scholar

    [20] Wu W F, Li H S, Wang N, et al. An approach for carbon content measurement in marine sediment: application of organic and elemental carbon analyzer[J]. Marine Environmental Research, 2023, 188:106000. doi: 10.1016/j.marenvres.2023.106000

    CrossRef Google Scholar

    [21] Bao R, McNichol A P, Hemingway J D, et al. Influence of different acid treatments on the radiocarbon content spectrum of sedimentary organic matter determined by RPO/accelerator mass spectrometry[J]. Radiocarbon, 2019, 61(2):395-413. doi: 10.1017/RDC.2018.125

    CrossRef Google Scholar

    [22] Barrett G T, Keaveney E, Lindroos A, et al. Ramped pyroxidation: a new approach for radiocarbon dating of lime mortars[J]. Journal of Archaeological Science, 2021, 129:105366. doi: 10.1016/j.jas.2021.105366

    CrossRef Google Scholar

    [23] Keaveney E M, Barrett G T, Allen K, et al. A new ramped pyroxidation/combustion facility at 14CHRONO, Belfast: setup description and initial results[J]. Radiocarbon, 2021, 63(4):1273-1286. doi: 10.1017/RDC.2021.46

    CrossRef Google Scholar

    [24] Pearson A, McNichol A P, Schneider R J, et al. Microscale AMS 14C measurement at NOSAMS[J]. Radiocarbon, 1997, 40(1):61-75. doi: 10.1017/S0033822200017902

    CrossRef Google Scholar

    [25] Jull A J T, Burr G S. Accelerator mass spectrometry: is the future bigger or smaller?[J]. Earth and Planetary Science Letters, 2006, 243(3-4):305-325. doi: 10.1016/j.jpgl.2005.12.018

    CrossRef Google Scholar

    [26] Roberts M L, Schneider R J, von Reden K F, et al. Progress on a gas-accepting ion source for continuous-flow accelerator mass spectrometry[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1):83-87.

    Google Scholar

    [27] von Reden K F, Roberts M L, Jenkins W J, et al. Software development for continuous-gas-flow AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2008, 266(10):2233-2237. doi: 10.1016/j.nimb.2008.03.001

    CrossRef Google Scholar

    [28] Mahmoudi N, Porter T M, Zimmerman A R, et al. Rapid degradation of Deepwater Horizon spilled oil by indigenous microbial communities in Louisiana saltmarsh sediments[J]. Environmental Science & Technology, 2013, 47(23):13303-13312.

    Google Scholar

    [29] Galy V, Eglinton T. Protracted storage of biospheric carbon in the Ganges-Brahmaputra Basin[J]. Nature Geoscience, 2011, 4(12):843-847. doi: 10.1038/ngeo1293

    CrossRef Google Scholar

    [30] Canuel E A, Hardison A K. Sources, ages, and alteration of organic matter in estuaries[J]. Annual Review of Marine Science, 2016, 8:409-434. doi: 10.1146/annurev-marine-122414-034058

    CrossRef Google Scholar

    [31] Tesi T, Goñi M A, Langone L, et al. Reexposure and advection of 14C-depleted organic carbon from old deposits at the upper continental slope[J]. Global Biogeochemical Cycles, 2010, 24(4):GB4002.

    Google Scholar

    [32] McNichol A P, Aluwihare L I. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: insights from studies of dissolved and particulate organic carbon (DOC and POC)[J]. Chemical Reviews, 2007, 107(2):443-466. doi: 10.1021/cr050374g

    CrossRef Google Scholar

    [33] Bao R, Zhao M X, McNichol A, et al. Temporal constraints on lateral organic matter transport along a coastal mud belt[J]. Organic Geochemistry, 2019, 128:86-93. doi: 10.1016/j.orggeochem.2019.01.007

    CrossRef Google Scholar

    [34] Carrie J, Sanei H, Stern H, et al. Standardisation of Rock–Eval pyrolysis for the analysis of recent sediments and soils[J]. Organic Geochemistry, 2012, 46:38-53. doi: 10.1016/j.orggeochem.2012.01.011

    CrossRef Google Scholar

    [35] Baudin F, Disnar J R, Aboussou A, et al. Guidelines for Rock-Eval analysis of recent marine sediments[J]. Organic Geochemistry, 2015, 86:71-80. doi: 10.1016/j.orggeochem.2015.06.009

    CrossRef Google Scholar

    [36] Behar F, Valérie B, De B Penteado H L. Rock-Eval 6 technology: performances and developments[J]. Oil & Gas Science and Technology, 2001, 56(2):111-134.

    Google Scholar

    [37] Capel E L, de la Rosa Arranz J M, González-Vila F J, et al. Elucidation of different forms of organic carbon in marine sediments from the Atlantic coast of Spain using thermal analysis coupled to isotope ratio and quadrupole mass spectrometry[J]. Organic Geochemistry, 2006, 37(12):1983-1994. doi: 10.1016/j.orggeochem.2006.07.025

    CrossRef Google Scholar

    [38] Cramer B, Faber E, Gerling A, et al. Reaction kinetics of stable carbon isotopes in natural gas-insights from dry, open system pyrolysis experiments[J]. Energy & Fuels, 2001, 15(3):517-532.

    Google Scholar

    [39] Hazera J, Sebag D, Kowalewski I, et al. Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification[J]. Biogeoscience, 2023, 20(24):5229-5242. doi: 10.5194/bg-20-5229-2023

    CrossRef Google Scholar

    [40] Delqué Količ E. Direct radiocarbon dating of pottery: selective heat treatment to retrieve smoke-derived carbon[J]. Radiocarbon, 1995, 37(2):275-284. doi: 10.1017/S0033822200030745

    CrossRef Google Scholar

    [41] Hedges R E M, Tiemei C, Housley R A. Results and methods in the radiocarbon dating of pottery[J]. Radiocarbon, 1992, 34(3):906-915. doi: 10.1017/S0033822200064237

    CrossRef Google Scholar

    [42] McGeehin J, Burr G S, Jull A J T, et al. Stepped-combustion 14C dating of sediment: a comparison with established techniques[J]. Radiocarbon, 2001, 43(2A):255-261. doi: 10.1017/S003382220003808X

    CrossRef Google Scholar

    [43] McGeehin J, Burr G S, Hodgins G, et al. Stepped-combustion 14C dating of bomb carbon in lake sediment[J]. Radiocarbon, 2004, 46(2):893-900. doi: 10.1017/S0033822200035931

    CrossRef Google Scholar

    [44] Cheng P, Fu Y C. Stepped-combustion 14C dating in loess-paleosol sediment[J]. Radiocarbon, 2020, 62(5):1209-1220. doi: 10.1017/RDC.2020.25

    CrossRef Google Scholar

    [45] Miura K, Maki T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy & Fuels, 1998, 12(5):864-869.

    Google Scholar

    [46] Hemingway J D, Rothman D H, Rosengard S Z, et al. Technical note: an inverse method to relate organic carbon reactivity to isotope composition from serial oxidation[J]. Biogeosciences, 2017, 14(22):5099-5114. doi: 10.5194/bg-14-5099-2017

    CrossRef Google Scholar

    [47] Williams E K, Rosenheim B E, McNichol A P, et al. Charring and non-additive chemical reactions during ramped pyrolysis: applications to the characterization of sedimentary and soil organic material[J]. Organic Geochemistry, 2014, 77:106-114. doi: 10.1016/j.orggeochem.2014.10.006

    CrossRef Google Scholar

    [48] Sanderman J, Grandy A S. Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times[J]. Soil, 2020, 6(1):131-144. doi: 10.5194/soil-6-131-2020

    CrossRef Google Scholar

    [49] Zigah P K, Minor E C, McNichol A P, et al. Constraining the sources and cycling of dissolved organic carbon in a large oligotrophic lake using radiocarbon analyses[J]. Geochimica et Cosmochimica Acta, 2017, 208:102-118. doi: 10.1016/j.gca.2017.03.021

    CrossRef Google Scholar

    [50] Rogers J A, Galy V, Kellerman A M, et al. Limited presence of permafrost dissolved organic matter in the Kolyma River, Siberia revealed by ramped oxidation[J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(7):e2020JG005977. doi: 10.1029/2020JG005977

    CrossRef Google Scholar

    [51] Huang W H, Yang H Y, He S F, et al. Thermochemical decomposition reveals distinct variability of sedimentary organic carbon reactivity along the Yangtze River estuary-shelf continuum[J]. Marine Chemistry, 2023, 257:104326. doi: 10.1016/j.marchem.2023.104326

    CrossRef Google Scholar

    [52] 姚鹏, 于志刚, 郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(1):153-160

    Google Scholar

    YAO Peng, YU Zhigang, GUO Zhigang. Research progress in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J]. Marine Geology & Quaternary Geology, 2013, 33(1):153-160.]

    Google Scholar

    [53] Rosenheim B E, Galy V. Direct measurement of riverine particulate organic carbon age structure[J]. Geophysical Research Letters, 2012, 39(19):L19703.

    Google Scholar

    [54] Williams E K, Rosenheim B E. What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7):2322-2335. doi: 10.1002/2015GC005839

    CrossRef Google Scholar

    [55] Bao R, Strasser M, McNichol A P, et al. Tectonically-triggered sediment and carbon export to the Hadal zone[J]. Nature Communications, 2018, 9(1):121. doi: 10.1038/s41467-017-02504-1

    CrossRef Google Scholar

    [56] Schwestermann T, Eglinton T I, Haghipour N, et al. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench[J]. Earth and Planetary Science Letters, 2021, 563:116870. doi: 10.1016/j.jpgl.2021.116870

    CrossRef Google Scholar

    [57] Zhang X W, Bianchi T S, Cui X Q, et al. Permafrost organic carbon mobilization from the watershed to the Colville River Delta: evidence from 14C ramped pyrolysis and lignin biomarkers[J]. Geophysical Research Letters, 2017, 44(22):11491-11500.

    Google Scholar

    [58] Shen Z X, Rosenheim B E, Törnqvist T E, et al. Engineered continental-scale rivers can drive changes in the carbon cycle[J]. AGU Advances, 2021, 2(1):e2020AV000273. doi: 10.1029/2020AV000273

    CrossRef Google Scholar

    [59] Bao R, McNichol A P, McIntyre C P, et al. Dimensions of radiocarbon variability within sedimentary organic matter[J]. Radiocarbon, 2018, 60(3):775-790. doi: 10.1017/RDC.2018.22

    CrossRef Google Scholar

    [60] Hemingway J D, Henkes G A. A disordered kinetic model for clumped isotope bond reordering in carbonates[J]. Earth and Planetary Science Letters, 2021, 566:116962. doi: 10.1016/j.jpgl.2021.116962

    CrossRef Google Scholar

    [61] Nizam S, Sen I S, Vinoj V, et al. Biomass-derived provenance dominates glacial surface organic carbon in the western Himalaya[J]. Environmental Science & Technology, 2020, 54(14):8612-8621.

    Google Scholar

    [62] Chi J L, Fan Y K, Wang L J, et al. Retention of soil organic matter by occlusion within soil minerals[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(3):727-746. doi: 10.1007/s11157-022-09628-x

    CrossRef Google Scholar

    [63] Hemingway J D, Rothman D H, Grant K E, et al. Mineral protection regulates long-term global preservation of natural organic carbon[J]. Nature, 2019, 570(7760):228-231. doi: 10.1038/s41586-019-1280-6

    CrossRef Google Scholar

    [64] Grant K E, Galy V V, Chadwick O A, et al. Thermal oxidation of carbon in organic matter rich volcanic soils: insights into SOC age differentiation and mineral stabilization[J]. Biogeochemistry, 2019, 144(3):291-304. doi: 10.1007/s10533-019-00586-1

    CrossRef Google Scholar

    [65] Cui X Q, Mucci A, Bianchi T S, et al. Global fjords as transitory reservoirs of labile organic carbon modulated by organo-mineral interactions[J]. Science Advances, 2022, 8(46):eadd0610. doi: 10.1126/sciadv.add0610

    CrossRef Google Scholar

    [66] Hage S, Galy V V, Cartigny M J B, et al. Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits[J]. Geology, 2020, 48(9):882-887. doi: 10.1130/G47320.1

    CrossRef Google Scholar

    [67] Hage S, Galy V V, Cartigny M J B, et al. Turbidity currents can dictate organic carbon fluxes across river-fed fjords: an example from Bute Inlet (BC, Canada)[J]. Journal of Geophysical Research:Biogeosciences, 2022, 127(6):e2022JG006824. doi: 10.1029/2022JG006824

    CrossRef Google Scholar

    [68] Zhang Y S, Galy V, Yu M, et al. Terrestrial organic carbon age and reactivity in the Yellow River fueling efficient preservation in marine sediments[J]. Earth and Planetary Science Letters, 2022, 585:117515. doi: 10.1016/j.jpgl.2022.117515

    CrossRef Google Scholar

    [69] Rosenheim B E, Santoro J A, Gunter M, et al. Improving antarctic sediment 14C dating using ramped pyrolysis: an example from the Hugo island trough[J]. Radiocarbon, 2013, 55(1):115-126. doi: 10.2458/azu_js_rc.v55i1.16234

    CrossRef Google Scholar

    [70] Vetter L, Rosenheim B E, Fernandez A, et al. Short organic carbon turnover time and narrow 14C age spectra in early Holocene wetland paleosols[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(1):142-155. doi: 10.1002/2016GC006526

    CrossRef Google Scholar

    [71] Subt C, Fangman K A, Wellner J S, et al. Sediment chronology in Antarctic deglacial sediments: reconciling organic carbon 14C ages to carbonate 14C ages using ramped PyrOx[J]. The Holocene, 2016, 26(2):265-273. doi: 10.1177/0959683615608688

    CrossRef Google Scholar

    [72] Venturelli R A, Siegfried M R, Roush K A, et al. Mid-Holocene grounding line retreat and readvance at Whillans ice stream, west Antarctica[J]. Geophysical Research Letters, 2020, 47(15):e2020GL088476. doi: 10.1029/2020GL088476

    CrossRef Google Scholar

    [73] Pendergraft M A, Dincer Z, Sericano J L, et al. Linking ramped pyrolysis isotope data to oil content through PAH analysis[J]. Environmental Research Letters, 2013, 8(4):044038. doi: 10.1088/1748-9326/8/4/044038

    CrossRef Google Scholar

    [74] Pendergraft M A, Rosenheim B E. Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis[J]. Environmental Science & Technology, 2014, 48(18):10966-10974.

    Google Scholar

    [75] Rogers K L, Bosman S H, Lardie-Gaylord M, et al. Petrocarbon evolution: ramped pyrolysis/oxidation and isotopic studies of contaminated oil sediments from the deepwater horizon oil spill in the Gulf of Mexico[J]. PLoS One, 2019, 14(2):e0212433. doi: 10.1371/journal.pone.0212433

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(82) PDF downloads(9) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint