2024 Vol. 44, No. 3
Article Contents

LIU Changling, ZHANG Yongchao, JI Yunkai, MENG Qingguo, HAO Xiluo, SUN Jianye, HU Gaowei, CHEN Qiang, LI Chengfeng, LIU Lele. Advances in microscopic testing techniques and applications for natural gas hydrates[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 136-148. doi: 10.16562/j.cnki.0256-1492.2023102301
Citation: LIU Changling, ZHANG Yongchao, JI Yunkai, MENG Qingguo, HAO Xiluo, SUN Jianye, HU Gaowei, CHEN Qiang, LI Chengfeng, LIU Lele. Advances in microscopic testing techniques and applications for natural gas hydrates[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 136-148. doi: 10.16562/j.cnki.0256-1492.2023102301

Advances in microscopic testing techniques and applications for natural gas hydrates

  • Abstact: Natural gas hydrates, as an important strategic resource, exhibit highly complex dynamic aggregation and dispersion processes within sediments, involving numerous scientific questions that necessitate a microscopic perspective for resolution. Microscopic testing techniques enable the acquisition of information on the state and evolution of research subjects at millimeter, micrometer, or even nanometer scales, making them essential tools for fundamental research on natural gas hydrates. This paper systematically reviewed the microscopic testing technology system for natural gas hydrates, which has been established using advanced techniques such as X-ray computed tomography (X-CT), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), low-field nuclear magnetic resonance (LFNMR), Raman spectroscopy (RM), scanning electron microscopy (SEM), and high-pressure differential scanning calorimetry (HPDSC). It mainly focused on the characteristics and advancements of each technique, as well as the applications and recent developments of these microscopic testing techniques in the quantitative characterization of the microstructure of hydrate-bearing sediments and the characterization of micro-scale permeability features. At last, this paper also proposed research directions and trends in the field of natural gas hydrate microscopic testing technology and applications, with the aim of providing more insights for in-depth research on natural gas hydrates.

  • 加载中
  • [1] 刘昌岭, 郝锡荦, 孟庆国, 等. 气体水合物基础特性研究进展[J]. 海洋地质前沿, 2020, 36(9):1-10

    Google Scholar

    LIU Changling, HAO Xiluo, MENG Qingguo, et al. Research progress in basic characteristics of gas hydrate[J]. Marine Geology Frontiers, 2020, 36(9):1-10.]

    Google Scholar

    [2] 刘昌岭, 孟庆国. 天然气水合物实验测试技术[M]. 北京: 科学出版社, 2016

    Google Scholar

    LIU Changling, MENG Qingguo. Gas Hydrates Experiment and Testing Technologies[M]. Beijing: Science Press, 2016.]

    Google Scholar

    [3] 中国海洋工程咨询协会. T/CAOE 23-2020 天然气水合物实验测试技术规范[S]. 2020

    Google Scholar

    China Ocean Engineering Consulting Association. Technical specification for test methods of natural gas hydrates[S]. 2020.]

    Google Scholar

    [4] 刘昌岭, 孟庆国. X射线衍射法在天然气水合物研究中的应用[J]. 岩矿测试, 2014, 33(4):468-479

    Google Scholar

    LIU Changling, MENG Qingguo. Applications of X-ray diffraction in natural gas hydrate research[J]. Rock and Mineral Analysis, 2014, 33(4):468-479.]

    Google Scholar

    [5] 孟庆国. 多组分气体水合物结构特征及生成分解过程研究[D]. 北京: 中国地质科学院博士学位论文, 2019

    Google Scholar

    MENG Qingguo. A dissertation submitted to Chinese academy of geological sciences for doctoral degree[D]. Doctor Dissertation of Chinese Academy of Geological Sciences, 2019.]

    Google Scholar

    [6] Liu C L, Meng Q G, Hu G W, et al. Characterization of hydrate-bearing sediments recovered from the Shenhu area of the South China Sea[J]. Interpretation, 2017, 5(3):SM13-SM23. doi: 10.1190/INT-2016-0211.1

    CrossRef Google Scholar

    [7] Arzbacher S, Rahmatian N, Ostermann A, et al. Macroscopic defects upon decomposition of CO2 clathrate hydrate crystals[J]. Physical Chemistry Chemical Physics, 2019, 21(19):9694-9708. doi: 10.1039/C8CP07871H

    CrossRef Google Scholar

    [8] 孟庆国, 刘昌岭, 李承峰, 等. 常见客体分子对笼型水合物晶格常数的影响[J]. 物理化学学报, 2020, 36(11):1910010

    Google Scholar

    MENG Qingguo, LIU Changling, LI Chengfeng, et al. Effect of common guest molecules on the lattice constants of clathrate hydrates[J]. Acta Physico-Chimica Sinica, 2020, 36(11):1910010.]

    Google Scholar

    [9] 孟庆国, 刘昌岭, 李承峰, 等. X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征[J]. 岩矿测试, 2021, 40(1):85-94

    Google Scholar

    MENG Qingguo, LIU Changling, LI Chengfeng, et al. Characterization of binary hydrates containing methane by X-ray diffraction and microscopic laser Raman spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1):85-94.]

    Google Scholar

    [10] 田苗, 孟庆国, 刘昌岭, 等. 天然气水合物粉晶X射线衍射测试参数优化及分析方法[J]. 岩矿测试, 2017, 36(5):481-488

    Google Scholar

    TIAN Miao, MENG Qingguo, LIU Changling, et al. Parameter optimization and analysis method for determination of natural gas hydrate by powder X-ray diffraction[J]. Rock and Mineral Analysis, 2017, 36(5):481-488.]

    Google Scholar

    [11] Chen S, Wang Y, Lang X, et al. Multiple H2 occupancies of clathrate hydrate and its significance in hydrogen storage[C]. Singapore, 2023.

    Google Scholar

    [12] Mok J, Choi W, Seo Y. Time-dependent observation of a cage-specific guest exchange in sI hydrates for CH4 recovery and CO2 sequestration[J]. Chemical Engineering Journal, 2020, 389:124434. doi: 10.1016/j.cej.2020.124434

    CrossRef Google Scholar

    [13] Zhou X B, Zhang Q, Long Z, et al. In situ PXRD analysis on the kinetic effect of PVP-K90 and PVCap on methane hydrate dissociation below ice point[J]. Fuel, 2021, 286:119491. doi: 10.1016/j.fuel.2020.119491

    CrossRef Google Scholar

    [14] Pakhomova A, Collings I E, Journaux B, et al. Host-guest hydrogen bondingin high-pressure acetone clathrate hydrates: in situ single-crystal X-ray diffraction study[J]. The Journal of Physical Chemistry Letters, 2022, 13(7):1833-1838. doi: 10.1021/acs.jpclett.1c03911

    CrossRef Google Scholar

    [15] Naeiji P, Pan M D, Luzi-Helbing M, et al. Experimental and simulation study for the dissociation behavior of gas hydrates – Part I: CH4 hydrates[J]. Energy & Fuels, 2023, 37(6):4484-4496.

    Google Scholar

    [16] Day S J, Thompson S P, Evans A, et al. In situ apparatus for the study of clathrate hydrates relevant to solar system bodies using synchrotron X-ray diffraction and Raman spectroscopy[J]. Astronomy & Astrophysics, 2015, 574:A91.

    Google Scholar

    [17] Subramanian S, Sloan E D. Trends in vibrational frequencies of guests trapped in clathrate hydrate cages[J]. The Journal of Physical Chemistry B, 2002, 106(17):4348-4355. doi: 10.1021/jp013644h

    CrossRef Google Scholar

    [18] 刘昌岭, 李承峰, 孟庆国. 天然气水合物拉曼光谱研究进展[J]. 光散射学报, 2013, 25(4):329-337

    Google Scholar

    LIU Changling, LI Chengfeng, MENG Qingguo. Progress of Raman spectroscopic research on natural gas hydrate[J]. The Journal of Light Scattering, 2013, 25(4):329-337.]

    Google Scholar

    [19] 刘昌岭, 业渝光, 孟庆国. 显微激光拉曼光谱测定甲烷水合物的水合指数[J]. 光谱学与光谱分析, 2010, 30(4): 963-966

    Google Scholar

    LIU Changling, YE Yuguang, MENG Qingguo. Determination of hydration number of methane hydrates using micro-laser Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(4): 963-966.]

    Google Scholar

    [20] 孟庆国, 刘昌岭, 业渝光, 等. 氮气水合物储氢的激光拉曼光谱研究[J]. 光谱学与光谱分析, 2012, 32(8):2139-2142

    Google Scholar

    MENG Qingguo, LIU Changling, YE Yuguang, et al. Raman spectroscopic investigation of hydrogen storage in nitrogen gas hydrates[J]. Spectroscopy and Spectral Analysis, 2012, 32(8):2139-2142.]

    Google Scholar

    [21] Liu C L, Meng Q G, He X L, et al. Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China[J]. Journal of Geochemical Exploration, 2015, 152:67-74. doi: 10.1016/j.gexplo.2015.02.002

    CrossRef Google Scholar

    [22] Geo Lim S, Yeop Oh C, Lee J W, et al. Sustainable freshwater recovery from radioactive wastewater by gas hydrate formation[J]. Chemical Engineering Journal, 2023, 461:141830. doi: 10.1016/j.cej.2023.141830

    CrossRef Google Scholar

    [23] 孟庆国, 刘昌岭, 李承峰, 等. 青海聚乎更钻探区天然气水合物拉曼光谱特征[J]. 现代地质, 2015, 29(5):1180-1188 doi: 10.3969/j.issn.1000-8527.2015.05.022

    CrossRef Google Scholar

    MENG Qingguo, LIU Changling, LI Chengfeng, et al. Raman spectroscopic characteristics of natural gas hydrates from Juhugeng drilling area, Qinghai[J]. Geoscience, 2015, 29(5):1180-1188.] doi: 10.3969/j.issn.1000-8527.2015.05.022

    CrossRef Google Scholar

    [24] 孟庆国, 刘昌岭, 业渝光, 等. 甲烷水合物分解过程原位激光拉曼光谱观测[J]. 天然气工业, 2010, 30(6):117-120 doi: 10.3787/j.issn.1000-0976.2010.06.032

    CrossRef Google Scholar

    MENG Qingguo, LIU Changling, YE Yuguang, et al. In situ Raman spectroscopic observation on methane hydrate dissociation[J]. Natural Gas Industry, 2010, 30(6):117-120.] doi: 10.3787/j.issn.1000-0976.2010.06.032

    CrossRef Google Scholar

    [25] 郝娅楠, 孟庆国, 刘昌岭, 等. 含水合物CH4-H2O体系中溶解甲烷的拉曼光谱原位监测[J]. 中国海洋大学学报, 2017, 47(9):96-103

    Google Scholar

    HAO Yanan, MENG Qingguo, LIU Changling, et al. In-situ Raman observation of dissolved CH4 in hydrate-bearing CH4-H2O system[J]. Periodical of Ocean University of China, 2017, 47(9):96-103.]

    Google Scholar

    [26] 刘昌岭, 业渝光, 孟庆国, 等. 显微激光拉曼光谱原位观测甲烷水合物生成与分解的微观过程[J]. 光谱学与光谱分析, 2011, 31(6):1524-1528 doi: 10.3964/j.issn.1000-0593(2011)06-1524-05

    CrossRef Google Scholar

    LIU Changling, YE Yuguang, MENG Qingguo, et al. In situ Raman spectroscopic observation of micro-processes of methane hydrate formation and dissociation[J]. Spectroscopy and Spectral Analysis, 2011, 31(6):1524-1528.] doi: 10.3964/j.issn.1000-0593(2011)06-1524-05

    CrossRef Google Scholar

    [27] Pan M D, Naeiji P, Schicks J M. Experimental and simulation study for the dissociation behavior of gas hydrates─Part II: sII mixed gas hydrates[J]. Energy & Fuels, 2023, 37(6):4497-4514.

    Google Scholar

    [28] Zhang W, Xu C G, Li X S, et al. Microscopic study on the key process and influence of efficient synthesis of natural gas hydrate by in situ Raman analysis of water microstructure in different systems with temperature drop[J]. Journal of Energy Chemistry, 2023, 82:317-333.

    Google Scholar

    [29] 刘昌岭, 孟庆国, 业渝光. 固体核磁共振技术在气体水合物研究中的应用[J]. 波谱学杂志, 2012, 29(3): 465-474

    Google Scholar

    LIU Changling, MENG Qingguo, YE Yuguang. Applications of solid State NMR in the studies of gas hydrate[J]. Chinese Journal of Magnetic Resonance, 2012, 29(3): 465-474.]

    Google Scholar

    [30] Chu H, Shin K. Highly-selective xenon–krypton separation using hydrate-based technology[J]. Separation and Purification Technology, 2023, 319:124094. doi: 10.1016/j.seppur.2023.124094

    CrossRef Google Scholar

    [31] 孟庆国, 刘昌岭, 业渝光. 13C固体核磁共振测定气体水合物结构实验研究[J]. 分析化学, 2011, 39(9):1447-1450

    Google Scholar

    MENG Qingguo, LIU Changling, YE Yuguang. 13C solid-state nuclear magnetic resonance investigations of gas hydrate structures[J]. Chinese Journal of Analytical Chemistry, 2011, 39(9):1447-1450.]

    Google Scholar

    [32] 孟庆国, 刘昌岭, 业渝光, 等. 13C固体核磁共振法测定CH4-THF二元水合物的微观结构特征[J]. 天然气工业, 2015, 35(3):135-140 doi: 10.3787/j.issn.1000-0976.2015.03.022

    CrossRef Google Scholar

    MENG Qingguo, LIU Changling, YE Yuguang, et al. Measurement of micro-structure features of binary CH4-THF clathrate hydrate based on the 13C solid state NMR[J]. Natural Gas Industry, 2015, 35(3):135-140.] doi: 10.3787/j.issn.1000-0976.2015.03.022

    CrossRef Google Scholar

    [33] Gupta A, Dec S F, Koh C A, et al. NMR investigation of methane hydrate dissociation[J]. The Journal of Physical Chemistry C, 2007, 111(5):2341-2346. doi: 10.1021/jp066536+

    CrossRef Google Scholar

    [34] Rojas Y, Lou X. Instrumental analysis of gas hydrates properties[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2):310-323. doi: 10.1002/apj.293

    CrossRef Google Scholar

    [35] 付娟, 吴能友, 邬黛黛, 等. 甲烷水合物的固体核磁共振碳谱与激光拉曼光谱研究[J]. 波谱学杂志, 2017, 34(2):148-155 doi: 10.11938/cjmr20170203

    CrossRef Google Scholar

    FU Juan, WU Nengyou, WU Daidai, et al. A solid-state 13C NMR and laser Raman spectroscopy study on synthesized methane hydrates[J]. Chinese Journal of Magnetic Resonance, 2017, 34(2):148-155.] doi: 10.11938/cjmr20170203

    CrossRef Google Scholar

    [36] Park K H, Kim D H, Cha M J. Spectroscopic observations of host-guest interactions occurring in (cyclobutanemethanol + methane) hydrate and their potential application to gas storage[J]. Chemical Engineering Journal, 2021, 421:127835. doi: 10.1016/j.cej.2020.127835

    CrossRef Google Scholar

    [37] Lee Y, Moon S, Seo D, et al. Hydrogen-bonded clathrate hydrate as tunable media for efficient methane storage[J]. Journal of Environmental Chemical Engineering, 2022, 10(5):108473. doi: 10.1016/j.jece.2022.108473

    CrossRef Google Scholar

    [38] Jeong J H, Cha M J, Jang J, et al. Thermodynamic behavior and spectroscopic properties of CO and C3H8 mixed gas hydrates: implications for hydrate-based gas separation[J]. Chemical Engineering Journal, 2022, 428:132076. doi: 10.1016/j.cej.2021.132076

    CrossRef Google Scholar

    [39] Seo D, Moon S, Lee Y, et al. Investigation of tuning behavior of trimethylene oxide hydrate with guest methane molecule and its critical guest concentration[J]. Chemical Engineering Journal, 2020, 389:123582. doi: 10.1016/j.cej.2019.123582

    CrossRef Google Scholar

    [40] Lee Y, Go W, Kim Y, et al. Molecular guest exchange and subsequent structural transformation in CH4 – CO2 replacement occurring in sH hydrates as revealed by 13C NMR spectroscopy and molecular dynamic simulations[J]. Chemical Engineering Journal, 2023, 455:140937. doi: 10.1016/j.cej.2022.140937

    CrossRef Google Scholar

    [41] Yang M J, Chong Z R, Zheng J N, et al. Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates[J]. Renewable and Sustainable Energy Reviews, 2017, 74:1346-1360. doi: 10.1016/j.rser.2016.11.161

    CrossRef Google Scholar

    [42] 孟庆国, 刘昌岭, 业渝光. 核磁共振成像原位监测冰融化及四氢呋喃水合物分解的微观过程[J]. 应用基础与工程科学学报, 2012, 20(1):11-20 doi: 10.3969/j.issn.1005-0930.2012.01.002

    CrossRef Google Scholar

    MENG Qingguo, LIU Changling, YE Yuguang. In situ monitoring ice melting and tetrahydrofuran hydrates dissociation with magnetic resonance imaging[J]. Journal of Basic Science and Engineering, 2012, 20(1):11-20.] doi: 10.3969/j.issn.1005-0930.2012.01.002

    CrossRef Google Scholar

    [43] Zhao G J, Yang M J, Lv X, et al. MRI insight on multiphase flow in hydrate-bearing sediment and development mechanism of hydrate seal[J]. Petroleum Science, 2023, 20(6):3854-3864. doi: 10.1016/j.petsci.2023.07.017

    CrossRef Google Scholar

    [44] Zhao Y C, Lei X, Zheng J N, et al. High resolution MRI studies of CO2 hydrate formation and dissociation near the gas-water interface[J]. Chemical Engineering Journal, 2021, 425:131426. doi: 10.1016/j.cej.2021.131426

    CrossRef Google Scholar

    [45] Lv J C, Jiang L L, Mu H L, et al. MRI investigation of hydrate pore habits and dynamic seepage characteristics in natural gas hydrates sand matrix[J]. Fuel, 2021, 303:121287. doi: 10.1016/j.fuel.2021.121287

    CrossRef Google Scholar

    [46] Almenningen S, Gauteplass J, Fotland P, et al. Visualization of hydrate formation during CO2 storage in water-saturated sandstone[J]. International Journal of Greenhouse Gas Control, 2018, 79:272-278. doi: 10.1016/j.ijggc.2018.11.008

    CrossRef Google Scholar

    [47] 姚军, 赵秀才. 数字岩心及孔隙级渗流模拟理论[M]. 北京: 石油工业出版社, 2010

    Google Scholar

    YAO Jun, ZHAO Xiucai. Digital Core and Pore-Scale Seepage Simulation Theory[M]. Beijing: Petroleum Industry Press, 2010.]

    Google Scholar

    [48] 张永超, 刘昌岭, 吴能友, 等. 含水合物沉积物孔隙结构特征与微观渗流模拟研究[J]. 海洋地质前沿, 2020, 36(9):23-33

    Google Scholar

    ZHANG Yongchao, LIU Changling, WU Nengyou, et al. Advances in the pore-structure characteristics and microscopic seepage numerical simulation of the hydrate-bearing sediments[J]. Marine Geology Frontiers, 2020, 36(9):23-33.]

    Google Scholar

    [49] Zhang Y C, Wan Y Z, Liu L L, et al. Changes in reaction surface during the methane hydrate dissociation and its implications for hydrate production[J]. Energy, 2021, 230:120848. doi: 10.1016/j.energy.2021.120848

    CrossRef Google Scholar

    [50] Zhang Y C, Li C F, Ma J S, et al. Investigating the effective permeability evolution as a function of hydrate saturation in the hydrate-bearing sands using a kinetic-theory-based pore network model[J]. Computers and Geotechnics, 2022, 150:104930. doi: 10.1016/j.compgeo.2022.104930

    CrossRef Google Scholar

    [51] Hou J, Ji Y K, Zhou K, et al. Effect of hydrate on permeability in porous media: pore-scale micro-simulation[J]. International Journal of Heat and Mass Transfer, 2018, 126:416-424. doi: 10.1016/j.ijheatmasstransfer.2018.05.156

    CrossRef Google Scholar

    [52] Li C F, Liu C L, Hu G W, et al. Investigation on the multiparameter of hydrate-bearing sands using nano-focus X-ray computed tomography[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(3):2286-2296. doi: 10.1029/2018JB015849

    CrossRef Google Scholar

    [53] Liu C L, Ye Y G, Meng Q G, et al. The characteristics of gas hydrates recovered from Shenhu area in the South China Sea[J]. Marine Geology, 2012, 307-310:22-27. doi: 10.1016/j.margeo.2012.03.004

    CrossRef Google Scholar

    [54] Murshed M M, Klapp S A, Enzmann F, et al. Natural gas hydrate investigations by synchrotron radiation X-ray cryo-tomographic microscopy (SRXCTM)[J]. Geophysical Research Letters, 2008, 35(23):L23612.

    Google Scholar

    [55] Chaouachi M, Falenty A, Sell K, et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6):1711-1722. doi: 10.1002/2015GC005811

    CrossRef Google Scholar

    [56] Kim J, Kim S, Park C, et al. Construction of prior models for ES-MDA by a deep neural network with a stacked autoencoder for predicting reservoir production[J]. Journal of Petroleum Science and Engineering, 2020, 187:106800. doi: 10.1016/j.petrol.2019.106800

    CrossRef Google Scholar

    [57] Ta X H, Yun T S, Muhunthan B, et al. Observations of pore-scale growth patterns of carbon dioxide hydrate using X-ray computed microtomography[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(3):912-924. doi: 10.1002/2014GC005675

    CrossRef Google Scholar

    [58] Chen X Y, Espinoza D N. Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate[J]. Fuel, 2018, 214:614-622. doi: 10.1016/j.fuel.2017.11.065

    CrossRef Google Scholar

    [59] Lv J C, Cheng Z C, Xue K P, et al. Pore-scale morphology and wettability characteristics of xenon hydrate in sand matrix: laboratory visualization with micro-CT[J]. Marine and Petroleum Geology, 2020, 120:104525. doi: 10.1016/j.marpetgeo.2020.104525

    CrossRef Google Scholar

    [60] Liu Z C, Kim J, Lei L, et al. Tetrahydrofuran hydrate in clayey sediments: laboratory formation, morphology, and wave characterization[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4):3307-3319. doi: 10.1029/2018JB017156

    CrossRef Google Scholar

    [61] 胡高伟, 李承峰, 业渝光, 等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报, 2014, 57(5):1675-1682 doi: 10.6038/cjg20140530

    CrossRef Google Scholar

    HU Gaowei, LI Chengfeng, YE Yuguang, et al. Observation of gas hydrate distribution in sediment pore space[J]. Chinese Journal of Geophysics, 2014, 57(5):1675-1682.] doi: 10.6038/cjg20140530

    CrossRef Google Scholar

    [62] Guo J C, Zhou H Y, Zeng J, et al. Advances in low-field nuclear magnetic resonance (NMR) technologies applied for characterization of pore space inside rocks: a critical review[J]. Petroleum Science, 2020, 17(5):1281-1297. doi: 10.1007/s12182-020-00488-0

    CrossRef Google Scholar

    [63] Ji Y K, Hou J, Zhao E M, et al. Study on the effects of heterogeneous distribution of methane hydrate on permeability of porous media using low-field NMR technique[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(2):e2019JB018572. doi: 10.1029/2019JB018572

    CrossRef Google Scholar

    [64] Zhang Y C, Liu L L, Wang D G, et al. Application of low-field nuclear magnetic resonance (LFNMR) in characterizing the dissociation of gas hydrate in a porous media[J]. Energy & Fuels, 2021, 35(3):2174-2182.

    Google Scholar

    [65] Liu Z, Chen L T, Wang Z Y, et al. Hydrate phase equilibria in natural sediments: inhibition mechanism and NMR-based prediction method[J]. Chemical Engineering Journal, 2023, 452:139447.

    Google Scholar

    [66] Ma S H, Zheng J N, Tian M R, et al. NMR quantitative investigation on methane hydrate formation characteristics under different driving forces[J]. Fuel, 2020, 261:116364. doi: 10.1016/j.fuel.2019.116364

    CrossRef Google Scholar

    [67] Ji Y K, Liu C L, Zhang Z, et al. Experimental study on characteristics of pore water conversion during methane hydrates formation in unsaturated sand[J]. China Geology, 2022, 5(2):276-284.

    Google Scholar

    [68] Ji Y K, Hou J, Cui G D, et al. Experimental study on methane hydrate formation in a partially saturated sandstone using low-field NMR technique[J]. Fuel, 2019, 251:82-90. doi: 10.1016/j.fuel.2019.04.021

    CrossRef Google Scholar

    [69] Liu L L, Zhang Z, Liu C L, et al. Nuclear magnetic resonance transverse surface relaxivity in quartzitic sands containing gas hydrate[J]. Energy & Fuels, 2021, 35(7):6144-6152.

    Google Scholar

    [70] 李文郁, 尹健昊, 王健, 等. 低场核磁共振技术在水泥基材料中的理论模型及应用[J]. 硅酸盐学报, 2022, 50(11):2992-3008

    Google Scholar

    LI Wenyu, YIN Jianhao, WANG Jian, et al. Principles and applications of low-field nuclear magnetic resonance in cementitious materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(11):2992-3008.]

    Google Scholar

    [71] Stern L A, Kirby S H, Durham W B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice[J]. Science, 1996, 273(5283):1843-1848.

    Google Scholar

    [72] 庞水全. 基于扫描电子显微镜的微结构特征尺寸测量方法研究[D]. 华南理工大学博士学位论文, 2022

    Google Scholar

    PANG Shuiquan. Research on measurement method of microstructure feature size based on scanning electron microscope[D]. Doctor Dissertation of South China University of Technology, 2022.]

    Google Scholar

    [73] Tang C P, Zhou X B, Li D L, et al. In situ Raman investigation on mixed CH4-C3H8 hydrate dissociation in the presence of polyvinylpyrrolidone[J]. Fuel, 2018, 214:505-511. doi: 10.1016/j.fuel.2017.11.063

    CrossRef Google Scholar

    [74] 彭力. 基于原子力显微镜的四氢呋喃水合物表面特征与力学行为研究[D]. 中国地质大学博士学位论文, 2020

    Google Scholar

    PENG Li. Study on surface characteristics and mechanical behavior of THF hydrate by atomic force microscope[D]. Doctor Dissertation of China University of Geosciences, 2020.]

    Google Scholar

    [75] Chen Q, Liu C L, Ye Y G. Differential scanning calorimetry research of hydrates phase equilibrium in porous media[J]. Advanced Materials Research, 2012, 512-515:2122-2126. doi: 10.4028/www.scientific.net/AMR.512-515.2122

    CrossRef Google Scholar

    [76] Kim S, Lee S H, Kang Y T. Characteristics of CO2 hydrate formation/dissociation in H2O + THF aqueous solution and estimation of CO2 emission reduction by district cooling application[J]. Energy, 2017, 120:362-373. doi: 10.1016/j.energy.2016.11.086

    CrossRef Google Scholar

    [77] Lee J, Kim K S, Seo Y. Thermodynamic, structural, and kinetic studies of cyclopentane + CO2 hydrates: applications for desalination and CO2 capture[J]. Chemical Engineering Journal, 2019, 375:121974. doi: 10.1016/j.cej.2019.121974

    CrossRef Google Scholar

    [78] Li X Y, Zhong D L, Englezos P, et al. Insights into the self-preservation effect of methane hydrate at atmospheric pressure using high pressure DSC[J]. Journal of Natural Gas Science and Engineering, 2021, 86:103738. doi: 10.1016/j.jngse.2020.103738

    CrossRef Google Scholar

    [79] Torré J P, Plantier F, Marlin L, et al. A novel stirred microcalorimetric cell for DSC measurements applied to the study of ice slurries and clathrate hydrates[J]. Chemical Engineering Research and Design, 2020, 160:465-475. doi: 10.1016/j.cherd.2020.06.019

    CrossRef Google Scholar

    [80] 刘乐乐, 吴能友, 张永超, 等. 海洋天然气水合物开采储层渗流基础[M]. 北京: 科学出版社, 2022

    Google Scholar

    LIU Lele, WU Nengyou, ZHANG Yongchao, et al. Foundation of Reservoir Seepage for the Exploitation of Marine Natural Gas Hydrate[M]. Beijing: Science Press, 2022.]

    Google Scholar

    [81] Wang D G, Li Y, Liu C L, et al. Study of hydrate occupancy, morphology and microstructure evolution with hydrate dissociation in sediment matrices using X-ray micro-CT[J]. Marine and Petroleum Geology, 2020, 113:104138. doi: 10.1016/j.marpetgeo.2019.104138

    CrossRef Google Scholar

    [82] 张永超, 刘昌岭, 刘乐乐, 等. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质, 2021, 41(3):193-202

    Google Scholar

    ZHANG Yongchao, LIU Changling, LIU Lele, et al. Sediment pore-structure and permeability variation induced by hydrate formation: evidence from low field nuclear magnetic resonance observation[J]. Marine Geology & Quaternary Geology, 2021, 41(3):193-202.]

    Google Scholar

    [83] 陈合龙, 韦昌富, 田慧会, 等. CO2水合物在砂中生成和分解的核磁共振弛豫响应(英文)[J]. 物理化学学报, 2017, 33(8):1599-1604 doi: 10.3866/PKU.WHXB201704194

    CrossRef Google Scholar

    CHEN Helong, WEI Changfu, TIAN Huihui, et al. NMR relaxation response of CO2 hydrate formation and dissociation in sand[J]. Acta Physico-Chimica Sinica, 2017, 33(8):1599-1604.] doi: 10.3866/PKU.WHXB201704194

    CrossRef Google Scholar

    [84] Ge X M, Liu J Y, Fan Y R, et al. Laboratory investigation into the formation and dissociation process of gas hydrate by low-field NMR technique[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(5):3339-3346. doi: 10.1029/2017JB014705

    CrossRef Google Scholar

    [85] Zhang Z, Liu L L, Li C F, et al. A testing assembly for combination measurements on gas hydrate-bearing sediments using x-ray computed tomography and low-field nuclear magnetic resonance[J]. Review of Scientific Instruments, 2021, 92(8):085108. doi: 10.1063/5.0040858

    CrossRef Google Scholar

    [86] Zhang Y C, Liu L L, Wang D G, et al. The interface evolution during methane hydrate dissociation within quartz sands and its implications to the permeability prediction based on NMR data[J]. Marine and Petroleum Geology, 2021, 129:105065. doi: 10.1016/j.marpetgeo.2021.105065

    CrossRef Google Scholar

    [87] Youslf M H, Abass H H, Selim M S, et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Engineering, 1991, 6(1):69-76. doi: 10.2118/18320-PA

    CrossRef Google Scholar

    [88] Sun X F, Mohanty K K. Kinetic simulation of methane hydrate formation and dissociation in porous media[J]. Chemical Engineering Science, 2006, 61(11):3476-3495. doi: 10.1016/j.ces.2005.12.017

    CrossRef Google Scholar

    [89] Kim H C, Bishnoi P R, Heidemann R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7):1645-1653. doi: 10.1016/0009-2509(87)80169-0

    CrossRef Google Scholar

    [90] Lei L, Seol Y, Choi J H, et al. Pore habit of methane hydrate and its evolution in sediment matrix – Laboratory visualization with phase-contrast micro-CT[J]. Marine and Petroleum Geology, 2019, 104:451-467. doi: 10.1016/j.marpetgeo.2019.04.004

    CrossRef Google Scholar

    [91] Wang D G, Wang C C, Li C F, et al. Effect of gas hydrate formation and decomposition on flow properties of fine-grained quartz sand sediments using X-ray CT based pore network model simulation[J]. Fuel, 2018, 226: 516-526.

    Google Scholar

    [92] Liu L L, Zhang Z, Li C F, et al. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic, mechanical, and electrical properties of hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103109.

    Google Scholar

    [93] Liu L L, Dai S, Ning F L, et al. Fractal characteristics of unsaturated sands − implications to relative permeability in hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2019, 66:11-17. doi: 10.1016/j.jngse.2019.03.019

    CrossRef Google Scholar

    [94] Ji Y K, Kneafsey T J, Hou J, et al. Relative permeability of gas and water flow in hydrate-bearing porous media: a micro-scale study by lattice Boltzmann simulation[J]. Fuel, 2022, 321:124013. doi: 10.1016/j.fuel.2022.124013

    CrossRef Google Scholar

    [95] Liu C L, Meng Q G, He X L, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine and Petroleum Geology, 2015, 61:14-21. doi: 10.1016/j.marpetgeo.2014.11.006

    CrossRef Google Scholar

    [96] Sun J Y, Li C F, Hao X L, et al. Study of the surface morphology of gas hydrate[J]. Journal of Ocean University of China, 2020, 19(2):331-338. doi: 10.1007/s11802-020-4039-7

    CrossRef Google Scholar

    [97] 李晨安, 李承峰, 刘昌岭, 等. X-CT法研究砂岩中甲烷水合物动态分布规律[J]. 核电子学与探测技术, 2018, 38(2):266-270 doi: 10.3969/j.issn.0258-0934.2018.02.023

    CrossRef Google Scholar

    LI Chenan, LI Chengfeng, LIU Changling, et al. Research of methane hydrate distribution in sandstone's pore space during hydrate formation and dissociation based on X-CT[J]. Nuclear Electronics & Detection Technology, 2018, 38(2):266-270.] doi: 10.3969/j.issn.0258-0934.2018.02.023

    CrossRef Google Scholar

    [98] 李承峰, 胡高伟, 业渝光, 等. X射线计算机断层扫描测定沉积物中水合物微观分布[J]. 光电子·激光, 2013, 24(3):551-557

    Google Scholar

    LI Chengfeng, HU Gaowei, YE Yuguang, et al. Microscopic distribution of gas hydrate in sediment determined by X-ray computerized tomography[J]. Journal of Optoelectronics·Laser, 2013, 24(3):551-557.]

    Google Scholar

    [99] 李承峰, 刘昌岭, 孟庆国, 等. 青海聚乎更水合物赋存区岩心微观孔隙、裂隙的微CT图像表征[J]. 现代地质, 2015, 29(5):1189-1193 doi: 10.3969/j.issn.1000-8527.2015.05.023

    CrossRef Google Scholar

    LI Chengfeng, LIU Changling, MENG Qingguo, et al. CT image characterization of pores and fissures in rock core from Juhugeng gas hydrate area in Qinghai[J]. Geoscience, 2015, 29(5):1189-1193.] doi: 10.3969/j.issn.1000-8527.2015.05.023

    CrossRef Google Scholar

    [100] 刘昌岭, 孟庆国, 李承峰, 等. 南海北部陆坡天然气水合物及其赋存沉积物特征[J]. 地学前缘, 2017, 24(4):41-50

    Google Scholar

    LIU Changling, MENG Qingguo, LI Chengfeng, et al. Characterization of natural gas hydrate and its deposits recovered from the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4):41-50.]

    Google Scholar

    [101] Le T X, Bornert M, Aimedieu P, et al. An experimental investigation on methane hydrate morphologies and pore habits in sandy sediment using synchrotron X-ray computed tomography[J]. Marine and Petroleum Geology, 2020, 122:104646. doi: 10.1016/j.marpetgeo.2020.104646

    CrossRef Google Scholar

    [102] Li R, Zhou Y F, Zhan W B, et al. Pore-scale modelling of elastic properties in hydrate-bearing sediments using 4-D synchrotron radiation imaging[J]. Marine and Petroleum Geology, 2022, 145:105864. doi: 10.1016/j.marpetgeo.2022.105864

    CrossRef Google Scholar

    [103] Sahoo S K, Madhusudhan B N, Marín-Moreno H, et al. Laboratory insights into the effect of sediment-hosted methane hydrate morphology on elastic wave velocity from time-lapse 4-D synchrotron X-ray computed tomography[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(11):4502-4521. doi: 10.1029/2018GC007710

    CrossRef Google Scholar

    [104] Pefoute E, Martin-Gondre L, Ollivier J, et al. Modeling the THF clathrate hydrate dynamics by combining molecular dynamics and quasi-elastic neutron scattering[J]. Chemical Physics, 2017, 496:24-34. doi: 10.1016/j.chemphys.2017.09.006

    CrossRef Google Scholar

    [105] Brant Carvalho P H B, Mace A, Bull C L, et al. Elucidation of the pressure induced amorphization of tetrahydrofuran clathrate hydrate[J]. The Journal of Chemical Physics, 2019, 150(20):204506.

    Google Scholar

    [106] Wille G, Bourrat X, Maubec N, et al. Raman-in-SEM, a multimodal and multiscale analytical tool: performance for materials and expertise[J]. Micron, 2014, 67:50-64. doi: 10.1016/j.micron.2014.06.008

    CrossRef Google Scholar

    [107] Li G, Yang Z R, Pei Z G, et al. Single-particle analysis of micro/nanoplastics by SEM-Raman technique[J]. Talanta, 2022, 249:123701. doi: 10.1016/j.talanta.2022.123701

    CrossRef Google Scholar

    [108] Wille G, Lahondere D, Schmidt U, et al. Coupling SEM-EDS and confocal Raman-in-SEM imaging: a new method for identification and 3D morphology of asbestos-like fibers in a mineral matrix[J]. Journal of Hazardous Materials, 2019, 374:447-458. doi: 10.1016/j.jhazmat.2019.04.012

    CrossRef Google Scholar

    [109] Yilmaz H, Ahmed S, Rodriguez J D, et al. Scanning electron-Raman cryomicroscopy for characterization of nanoparticle-albumin drug products[J]. Analytical Chemistry, 2023, 95(5):2633-2638. doi: 10.1021/acs.analchem.2c03826

    CrossRef Google Scholar

    [110] Zhang Z C, Kusalik P G, Guo G J. Bridging solution properties to gas hydrate nucleation through guest dynamics[J]. Physical Chemistry Chemical Physics, 2018, 20(38):24535-24538. doi: 10.1039/C8CP04466J

    CrossRef Google Scholar

    [111] Zhang Z C, Liu C J, Walsh M R, et al. Effects of ensembles on methane hydrate nucleation kinetics[J]. Physical Chemistry Chemical Physics, 2016, 18(23):15602-15608. doi: 10.1039/C6CP02171A

    CrossRef Google Scholar

    [112] Pan M D, Luzi-Helbing M, Schicks J M. Heterogeneous and coexisting hydrate phases: formation under natural and laboratory conditions[J]. Energy & Fuels, 2022, 36(18):10489-10503.

    Google Scholar

    [113] Linga P, Kumar R, Lee J D, et al. A new apparatus to enhance the rate of gas hydrate formation: application to capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2010, 4(4):630-637. doi: 10.1016/j.ijggc.2009.12.014

    CrossRef Google Scholar

    [114] Wang X L, Zhang F Y, Lipiński W. Research progress and challenges in hydrate-based carbon dioxide capture applications[J]. Applied Energy, 2020, 269:114928. doi: 10.1016/j.apenergy.2020.114928

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(909) PDF downloads(93) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint