2024 Vol. 44, No. 2
Article Contents

HE Xiangfeng, LIU Jianxing, BI Dongjie, GAO Jianhua, SHI Xuefa. Research progress and prospects on the dating of pelagic clay[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 183-198. doi: 10.16562/j.cnki.0256-1492.2023090801
Citation: HE Xiangfeng, LIU Jianxing, BI Dongjie, GAO Jianhua, SHI Xuefa. Research progress and prospects on the dating of pelagic clay[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 183-198. doi: 10.16562/j.cnki.0256-1492.2023090801

Research progress and prospects on the dating of pelagic clay

More Information
  • Pelagic clay, which is extensively distributed in the ocean basins below the carbonate compensation depth, exhibits slow sedimentation rate and contains only a small amount of preserved biogenic components (primarily biogenic apatite). The commonly used dating methods that combine magnetic stratigraphy with biostratigraphy in marine sediments cannot be effectively applicable. As a result, the establishment of a age framework for pelagic clay has been hindered by enormous difficulties and challenges, which seriously limits the researchers in geoscience to thoroughly investigate the evolution of sedimentation environment and the mechanisms of hyper-enrichment in rare earth elements in pelagic clay. In this article, we reviewed various dating methods for pelagic clay used since the last century, including mainly: magnetostratigraphy, fish teeth 87Sr/86Sr dating, fish teeth U-Pb dating, 10Be dating, 230Thex dating, 187Os/188Os dating, ichthyolith biostratigraphy, constant Co-flux model, and commonly used stratigraphic correlation methods. Each method has own advantages and disadvantages, and it is often difficult to acquire a complete and reliable age framework using any of the above methods alone. Consequently, systematic comparsion and validation for age framework obtained by intergrating multiple dating methods will be more efficient in improving the relability of an age framework for dating pelagic clay.

  • 加载中
  • [1] Leinen M. The pelagic clay province of the North Pacific Ocean[M]//Winterer E L, Hussong D M, Decker R W. The Eastern Pacific Ocean and Hawaii. Boulder: The Geology of North America, 1989.

    Google Scholar

    [2] Kadko D. Late Cenozoic sedimentation and metal deposition in the North Pacific[J]. Geochimica et Cosmochimica Acta, 1985, 49(3):651-661. doi: 10.1016/0016-7037(85)90160-7

    CrossRef Google Scholar

    [3] Kyte F T, Leinen M, Heath G R, et al. Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3[J]. Geochimica et Cosmochimica Acta, 1993, 57(8):1719-1740. doi: 10.1016/0016-7037(93)90109-A

    CrossRef Google Scholar

    [4] Doh S J, King J W, Leinen M. A rock-magnetic study of giant piston core LL44-GPC3 from the central North Pacific and its paleoceanographic implications[J]. Paleoceanography, 1988, 3(1):89-111. doi: 10.1029/PA003i001p00089

    CrossRef Google Scholar

    [5] Doyle P S, Riedel W R. Cretaceous to neogene ichthyoliths in a giant piston core from the central North Pacific[J]. Micropaleontology, 1979, 25(4):337-364. doi: 10.2307/1485427

    CrossRef Google Scholar

    [6] Mangini A, Segl M, Bonani G, et al. Mass-spectrometric 10Be dating of deep-sea sediments applying the Zürich tandem accelerator[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2):353-358.

    Google Scholar

    [7] Prince R A, Heath G R, Kominz M. Paleomagnetic studies of central North Pacific sediment cores: stratigraphy, sedimentation rates, and the origin of magnetic instability[J]. GSA Bulletin, 1980, 91(8):1789-1835.

    Google Scholar

    [8] Staudigel H, Doyle P, Zindler A. Sr and Nd isotope systematics in fish teeth[J]. Earth and Planetary Science Letters, 1985, 76(1-2):45-56. doi: 10.1016/0012-821X(85)90147-5

    CrossRef Google Scholar

    [9] 石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(2-3):195-208

    Google Scholar

    SHI Xuefa, BI Dongjie, HUANG Mu, et al. Distribution and metallogenesis of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(2-3):195-208.]

    Google Scholar

    [10] Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8):535-539. doi: 10.1038/ngeo1185

    CrossRef Google Scholar

    [11] Dutkiewicz A, Müller R D, O’callaghan S, et al. Census of seafloor sediments in the world’s ocean[J]. Geology, 2015, 43(9):795-798. doi: 10.1130/G36883.1

    CrossRef Google Scholar

    [12] Gleason J D, Moore T C, Rea D K, et al. Ichthyolith strontium isotope stratigraphy of a Neogene red clay sequence: calibrating eolian dust accumulation rates in the central North Pacific[J]. Earth and Planetary Science Letters, 2002, 202(3-4):625-636. doi: 10.1016/S0012-821X(02)00827-0

    CrossRef Google Scholar

    [13] Gleason J D, Moore Jr T, Johnson T M, et al. Age calibration of piston core EW9709-07 (equatorial central Pacific) using fish teeth Sr isotope stratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4):355-366. doi: 10.1016/S0031-0182(04)00366-9

    CrossRef Google Scholar

    [14] Wang T Y, Dong Y H, Chu F Y, et al. In situ Strontium isotope stratigraphy of fish teeth in deep-sea sediments from the western Clarion-Clipperton Fracture Zone, eastern Pacific Ocean[J]. Chemical Geology, 2023, 636:121624. doi: 10.1016/j.chemgeo.2023.121624

    CrossRef Google Scholar

    [15] Shin J Y, Kim W, Seong Y B, et al. Quaternary magnetic stratigraphy of deep-sea sediments in the Western North Pacific: influences of paleomagnetic recording efficiency and lock-in delay[J]. Journal of Geophysical Research:Solid Earth, 2023, 128(4):e2022JB025490. doi: 10.1029/2022JB025490

    CrossRef Google Scholar

    [16] Bi D J, Shi X F, Huang M, et al. Dating pelagic sediments from the Northwestern Pacific Ocean by integration of multi-geochronologic approaches[J]. Ore Geology Reviews, 2023, 161:105614. doi: 10.1016/j.oregeorev.2023.105614

    CrossRef Google Scholar

    [17] Wang H F, Deng X G, Yi L, et al. Dominant eccentricity cycles in paleoenvironmental variabilities recorded by pelagic sediments in the western Pacific during 15-11 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 628:111776. doi: 10.1016/j.palaeo.2023.111776

    CrossRef Google Scholar

    [18] Li D F, Peng J Z, Chew D, et al. Dating rare earth element enrichment in deep-sea sediments using U-Pb geochronology of bioapatite[J]. Geology, 2023, 51(5):428-433. doi: 10.1130/G50938.1

    CrossRef Google Scholar

    [19] Nozaki Y, Yang H S, Yamada M. Scavenging of thorium in the ocean[J]. Journal of Geophysical Research:Oceans, 1987, 92(C1):772-778. doi: 10.1029/JC092iC01p00772

    CrossRef Google Scholar

    [20] Usui Y, Yamazaki T. Magnetostratigraphic evidence for post-depositional distortion of osmium isotopic records in pelagic clay and its implications for mineral flux estimates[J]. Earth, Planets and Space, 2021, 73(1):2. doi: 10.1186/s40623-020-01338-4

    CrossRef Google Scholar

    [21] Dunlea A G, Murray R W, Sauvage J, et al. Cobalt‐based age models of pelagic clay in the South Pacific Gyre[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8):2694-2710. doi: 10.1002/2015GC005892

    CrossRef Google Scholar

    [22] Shimono T, Yamazaki T. Environmental rock‐magnetism of Cenozoic red clay in the South Pacific Gyre[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(4):1296-1311. doi: 10.1002/2015GC006062

    CrossRef Google Scholar

    [23] Roberts A P, Winklhofer M. Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling[J]. Earth and Planetary Science Letters, 2004, 227(3-4):345-359. doi: 10.1016/j.jpgl.2004.07.040

    CrossRef Google Scholar

    [24] Valet J P, Meynadier L, Simon Q, et al. When and why sediments fail to record the geomagnetic field during polarity reversals[J]. Earth and Planetary Science Letters, 2016, 453:96-107. doi: 10.1016/j.jpgl.2016.07.055

    CrossRef Google Scholar

    [25] Opdyke N D, Foster J H. Paleomagnetism of cores from the North Pacific[M]//Hays J D. Geological Investigations of the North Pacific. Boulder: Geological Society of America, 1970: 83-119.

    Google Scholar

    [26] Kent D V, Lowrie W. Origin of magnetic instability in sediment cores from the central North Pacific[J]. Journal of Geophysical Research, 1974, 79(20):2987-3000. doi: 10.1029/JB079i020p02987

    CrossRef Google Scholar

    [27] Yamazaki T, Ioka N. Environmental rock‐magnetism of pelagic clay: Implications for Asian eolian input to the North Pacific since the Pliocene[J]. Paleoceanography, 1997, 12(1):111-124. doi: 10.1029/96PA02757

    CrossRef Google Scholar

    [28] Yi L, Hu B Q, Zhao J T, et al. Magnetostratigraphy of abyssal deposits in the central Philippine sea and regional sedimentary dynamics during the quaternary[J]. Paleoceanography and Paleoclimatology, 2022, 37(5):e2021PA004365. doi: 10.1029/2021PA004365

    CrossRef Google Scholar

    [29] Lyle M, Wilson P, Janacek T. Leg 199[J]. Proceedings of the Ocean Drilling Program, Initial Reports, 2002, 199:1-87.

    Google Scholar

    [30] Johnson H P, Kinoshita H, Merrill R T. Rock magnetism and paleomagnetism of some North Pacific deep-sea sediments[J]. GSA Bulletin, 1975, 86(3):412-420. doi: 10.1130/0016-7606(1975)86<412:RMAPOS>2.0.CO;2

    CrossRef Google Scholar

    [31] Yamazaki T. Secondary remanent magnetization of pelagic clay in the South Pacific: Application of thermal demagnetization[J]. Geophysical Research Letters, 1986, 13(13):1438-1441. doi: 10.1029/GL013i013p01438

    CrossRef Google Scholar

    [32] Yamazaki T, Katsura I. Magnetic grain size and viscous remanent magnetization of pelagic clay[J]. Journal of Geophysical Research:Solid Earth, 1990, 95(B4):4373-4382. doi: 10.1029/JB095iB04p04373

    CrossRef Google Scholar

    [33] Dunlop D J. Viscous magnetization of 0.04-100 μm magnetites[J]. Geophysical Journal International, 1983, 74(3):667-687.

    Google Scholar

    [34] Yamazaki T, Katsura I, Marumo K. Origin of stable remanent magnetization of siliceous sediments in the central equatorial Pacific[J]. Earth and Planetary Science Letters, 1991, 105(1-3):81-93. doi: 10.1016/0012-821X(91)90122-X

    CrossRef Google Scholar

    [35] Deng X G, Yi L, Paterson G A, et al. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the middle Pleistocene: potential constraints for Antarctic bottom water circulation[J]. International Geology Review, 2016, 58(1):49-57. doi: 10.1080/00206814.2015.1055597

    CrossRef Google Scholar

    [36] Liu J X, Shi X F, Liu Y G, et al. A thick negative polarity anomaly in a sediment core from the central arctic ocean: geomagnetic excursion versus reversal[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(11):10687-10703. doi: 10.1029/2019JB018073

    CrossRef Google Scholar

    [37] Yi L, Xu D, Jiang X Y, et al. Magnetostratigraphy and authigenic 10Be/9Be dating of Plio-Pleistocene abyssal surficial sediments on the southern slope of Mariana Trench and sedimentary processes during the Mid-Pleistocene transition[J]. Journal of Geophysical Research:Oceans, 2020, 125(8):e2020JC016250. doi: 10.1029/2020JC016250

    CrossRef Google Scholar

    [38] Banner J L. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy[J]. Earth-Science Reviews, 2004, 65(3-4):141-194. doi: 10.1016/S0012-8252(03)00086-2

    CrossRef Google Scholar

    [39] Burke W H, Denison R E, Hetherington E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time[J]. Geology, 1982, 10(10):516-519. doi: 10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2

    CrossRef Google Scholar

    [40] Barrat J A, Taylor R N, André J P, et al. Strontium isotopes in biogenic phosphates from a Neogene marine formation: implications for palaeoseawater studies[J]. Chemical Geology, 2000, 168(3-4):325-332. doi: 10.1016/S0009-2541(00)00200-X

    CrossRef Google Scholar

    [41] Palmer M R, Elderfield H. Sr isotope composition of sea water over the past 75 Myr[J]. Nature, 1985, 314(6011):526-628. doi: 10.1038/314526a0

    CrossRef Google Scholar

    [42] Depaolo D J, Ingram B L. High-resolution stratigraphy with strontium isotopes[J]. Science, 1985, 227(4689):938-941. doi: 10.1126/science.227.4689.938

    CrossRef Google Scholar

    [43] McArthur J M, Howarth R J, Shields G A, et al. Strontium isotope stratigraphy[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 211-238.

    Google Scholar

    [44] Martin E E, Haley B A. Fossil fish teeth as proxies for seawater Sr and Nd isotopes[J]. Geochimica et Cosmochimica Acta, 2000, 64(5):835-847. doi: 10.1016/S0016-7037(99)00376-2

    CrossRef Google Scholar

    [45] Martin E E, Macdougall J D. Sr and Nd isotopes at the prmian/triassic boundary: A record of climate change[J]. Chemical Geology, 1995, 125(1-2):73-99. doi: 10.1016/0009-2541(95)00081-V

    CrossRef Google Scholar

    [46] Peucker‐Ehrenbrink B, Ravizza G. The marine osmium isotope record[J]. Terra Nova, 2000, 12(5):205-219. doi: 10.1046/j.1365-3121.2000.00295.x

    CrossRef Google Scholar

    [47] Mchargue L R, Damon P E. The global beryllium 10 cycle[J]. Reviews of Geophysics, 1991, 29(2):141-158. doi: 10.1029/91RG00072

    CrossRef Google Scholar

    [48] Ingram B L, Coccioni R, Montanari A, et al. Strontium isotopic composition of mid-cretaceous seawater[J]. Science, 1994, 264(5158):546-550. doi: 10.1126/science.264.5158.546

    CrossRef Google Scholar

    [49] Ingram B L. High-resolution dating of deep-sea clays using Sr isotopes in fossil fish teeth[J]. Earth and Planetary Science Letters, 1995, 134(3-4):545-555. doi: 10.1016/0012-821X(95)00151-2

    CrossRef Google Scholar

    [50] Wang F L, He G W, Deng X G, et al. Fish teeth Sr isotope stratigraphy and Nd isotope variations: New insights on REY enrichments in deep-Sea sediments in the Pacific[J]. Journal of Marine Science and Engineering, 2021, 9(12):1379. doi: 10.3390/jmse9121379

    CrossRef Google Scholar

    [51] Bertram C J, Elderfield H, Aldridge R J, et al. 87Sr/86Sr, 143Nd/144Nd and REEs in Silurian phosphatic fossils[J]. Earth and Planetary Science Letters, 1992, 113(1-2):239-249. doi: 10.1016/0012-821X(92)90222-H

    CrossRef Google Scholar

    [52] Holmden C, Creaser R A, Muehlenbachs K, et al. Isotopic and elemental systematics of Sr and Nd in 454 Ma biogenic apatites: implications for paleoseawater studies[J]. Earth and Planetary Science Letters, 1996, 142(3-4):425-437. doi: 10.1016/0012-821X(96)00119-7

    CrossRef Google Scholar

    [53] Martin E E, Scher H D. Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good news[J]. Earth and Planetary Science Letters, 2004, 220(1-2):25-39. doi: 10.1016/S0012-821X(04)00030-5

    CrossRef Google Scholar

    [54] Matton O, Cloutier R, Stevenson R. Apatite for destruction: Isotopic and geochemical analyses of bioapatites and sediments from the Upper Devonian Escuminac Formation (Miguasha, Québec)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 361-362:73-83. doi: 10.1016/j.palaeo.2012.08.004

    CrossRef Google Scholar

    [55] Nelson B K, Deniro M J, Schoeninger M J, et al. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone[J]. Geochimica et Cosmochimica Acta, 1986, 50(9):1941-1949. doi: 10.1016/0016-7037(86)90250-4

    CrossRef Google Scholar

    [56] Bosio G, Bianucci G, Collareta A, et al. Ultrastructure, composition, and 87Sr/86Sr dating of shark teeth from lower Miocene sediments of southwestern Peru[J]. Journal of South American Earth Sciences, 2022, 118:103909. doi: 10.1016/j.jsames.2022.103909

    CrossRef Google Scholar

    [57] Sano Y, Terada K. Direct ion microprobe U-Pb dating of fossil tooth of a Permian shark[J]. Earth and Planetary Science Letters, 1999, 174(1-2):75-80. doi: 10.1016/S0012-821X(99)00253-8

    CrossRef Google Scholar

    [58] Sano Y, Terada K. In situ ion microprobe U-Pb dating and REE abundances of a carboniferous conodont[J]. Geophysical Research Letters, 2001, 28(5):831-834. doi: 10.1029/2000GL008467

    CrossRef Google Scholar

    [59] Sano Y, Terada K, Ly C V, et al. Ion microprobe U-Pb dating of a dinosaur tooth[J]. Geochemical Journal, 2006, 40(2):171-179. doi: 10.2343/geochemj.40.171

    CrossRef Google Scholar

    [60] Ueki S, Sano Y. In situ ion microprobe Th-Pb dating of Silurian conodonts[J]. Geochemical Journal, 2001, 35(5):307-314. doi: 10.2343/geochemj.35.307

    CrossRef Google Scholar

    [61] Fassett J E, Heaman L M, Simonetti A. Direct U-Pb dating of cretaceous and paleocene dinosaur bones, San Juan Basin, New Mexico[J]. Geology, 2011, 39(2):159-162. doi: 10.1130/G31466.1

    CrossRef Google Scholar

    [62] Rochín-Bañaga H, Davis D W, Schwennicke T. First U-Pb dating of fossilized soft tissue using a new approach to paleontological chronometry[J]. Geology, 2021, 49(9):1027-1031. doi: 10.1130/G48386.1

    CrossRef Google Scholar

    [63] Kohn M J, Schoeninger M J, Barker W W. Altered states: effects of diagenesis on fossil tooth chemistry[J]. Geochimica et Cosmochimica Acta, 1999, 63(18):2737-2747. doi: 10.1016/S0016-7037(99)00208-2

    CrossRef Google Scholar

    [64] Greene S, Heaman L M, Dufrane S A, et al. Introducing a geochemical screen to identify geologically meaningful U-Pb dates in fossil teeth[J]. Chemical Geology, 2018, 493:1-15. doi: 10.1016/j.chemgeo.2018.04.022

    CrossRef Google Scholar

    [65] Keenan S W. From bone to fossil: A review of the diagenesis of bioapatite[J]. American Mineralogist, 2016, 101(9):1943-1951. doi: 10.2138/am-2016-5737

    CrossRef Google Scholar

    [66] Reynard B, Balter V. Trace elements and their isotopes in bones and teeth: Diet, environments, diagenesis, and dating of archeological and paleontological samples[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 416:4-16. doi: 10.1016/j.palaeo.2014.07.038

    CrossRef Google Scholar

    [67] Romer R L. Isotopically heterogeneous initial Pb and continuous 222Rn loss in fossils: The U-Pb systematics of Brachiosaurus brancai[J]. Geochimica et Cosmochimica Acta, 2001, 65(22):4201-4213. doi: 10.1016/S0016-7037(01)00716-5

    CrossRef Google Scholar

    [68] Balter V, Blichert-Toft J, Braga J, et al. U-Pb dating of fossil enamel from the Swartkrans Pleistocene hominid site, South Africa[J]. Earth and Planetary Science Letters, 2008, 267(1-2):236-246. doi: 10.1016/j.jpgl.2007.11.039

    CrossRef Google Scholar

    [69] Grün R, Eggins S, Kinsley L, et al. Laser ablation U-series analysis of fossil bones and teeth[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 416:150-167. doi: 10.1016/j.palaeo.2014.07.023

    CrossRef Google Scholar

    [70] Rochín-Bañaga H, Davis D W. Insights into U-Th-Pb mobility during diagenesis from laser ablation U-Pb dating of apatite fossils[J]. Chemical Geology, 2023, 618:121290. doi: 10.1016/j.chemgeo.2022.121290

    CrossRef Google Scholar

    [71] Grün R, Mcdermott F. Open system modelling for U-series and ESR dating of teeth[J]. Quaternary Science Reviews, 1994, 13(2):121-125. doi: 10.1016/0277-3791(94)90037-X

    CrossRef Google Scholar

    [72] Eggins S, Grün R, Pike A W G, et al. 238U, 232Th profiling and U-series isotope analysis of fossil teeth by laser ablation-ICPMS[J]. Quaternary Science Reviews, 2003, 22(10-13):1373-1382. doi: 10.1016/S0277-3791(03)00064-7

    CrossRef Google Scholar

    [73] Grün R, Aubert M, Joannes-Boyau R, et al. High resolution analysis of uranium and thorium concentration as well as U-series isotope distributions in a Neanderthal tooth from Payre (Ardèche, France) using laser ablation ICP-MS[J]. Geochimica et Cosmochimica Acta, 2008, 72(21):5278-5290. doi: 10.1016/j.gca.2008.08.007

    CrossRef Google Scholar

    [74] Geibert W, Stimac I, Van Der Loeff M M R, et al. Dating deep-sea sediments with 230Th excess using a constant rate of supply model[J]. Paleoceanography and Paleoclimatology, 2019, 34(12):1895-1912. doi: 10.1029/2019PA003663

    CrossRef Google Scholar

    [75] Scholten J C, Botz R, Paetsch H, et al. High-resolution uranium-series dating of Norwegian-Greenland Sea sediments: 230Th vs. δ18O stratigraphy[J]. Marine Geology, 1994, 121(1-2):77-85. doi: 10.1016/0025-3227(94)90158-9

    CrossRef Google Scholar

    [76] Scholten J C, Botz R, Mangini A, et al. High resolution 230Thex stratigraphy of sediments from high-latitude areas (Norwegian Sea, Fram Strait)[J]. Earth and Planetary Science Letters, 1990, 101(1):54-62. doi: 10.1016/0012-821X(90)90123-F

    CrossRef Google Scholar

    [77] Ku T L, Broecker W S, Opdyke N. Comparison of sedimentation rates measured by paleomagnetic and the ionium methods of age determination[J]. Earth and Planetary Science Letters, 1968, 4(1):1-16. doi: 10.1016/0012-821X(68)90046-0

    CrossRef Google Scholar

    [78] Zhou T C, Shi X F, Huang M, et al. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean: Evidence from geochemistry, mineralogy and isotope systematics[J]. Ore Geology Reviews, 2021, 138:104330. doi: 10.1016/j.oregeorev.2021.104330

    CrossRef Google Scholar

    [79] Yang Z F, Qian Q K, Chen M, et al. Enhanced but highly variable bioturbation around seamounts in the northwest Pacific[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2020, 156:103190. doi: 10.1016/j.dsr.2019.103190

    CrossRef Google Scholar

    [80] Yi L, Wang H F, Deng X G, et al. Geochronology and geochemical properties of Mid-Pleistocene sediments on the Caiwei Guyot in the Northwest Pacific imply a surface-to-deep linkage[J]. Journal of Marine Science and Engineering, 2021, 9(3):253. doi: 10.3390/jmse9030253

    CrossRef Google Scholar

    [81] Li W P, Li X X, Mei X, et al. A review of current and emerging approaches for Quaternary marine sediment dating[J]. Science of the Total Environment, 2021, 780:146522. doi: 10.1016/j.scitotenv.2021.146522

    CrossRef Google Scholar

    [82] Lebatard A E, Bourlès D L, Braucher R, et al. Application of the authigenic 10Be/9Be dating method to continental sediments: reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin[J]. Earth and Planetary Science Letters, 2010, 297(1-2):57-70. doi: 10.1016/j.jpgl.2010.06.003

    CrossRef Google Scholar

    [83] Willenbring J K, Von Blanckenburg F. Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics[J]. Earth-Science Reviews, 2010, 98(1-2):105-122. doi: 10.1016/j.earscirev.2009.10.008

    CrossRef Google Scholar

    [84] Tanaka S, Inoue T. 10Be dating of North Pacific sediment cores up to 2.5 million years B. P.[J]. Earth and Planetary Science Letters, 1979, 45(1):181-187. doi: 10.1016/0012-821X(79)90119-5

    CrossRef Google Scholar

    [85] Tanaka S, Inoue T, Imamura M. The 10Be method of dating marine sediments—comparison with the paleomagnetic method[J]. Earth and Planetary Science Letters, 1977, 37(1):55-60. doi: 10.1016/0012-821X(77)90145-5

    CrossRef Google Scholar

    [86] Bourles D, Raisbeck G M, Yiou F. 10Be and 9Be in marine sediments and their potential for dating[J]. Geochimica et Cosmochimica Acta, 1989, 53(2):443-452. doi: 10.1016/0016-7037(89)90395-5

    CrossRef Google Scholar

    [87] Somayajulu B L K. Analysis of causes for the beryllium-10 variations in deep sea sediments[J]. Geochimica et Cosmochimica Acta, 1977, 41(7):909-913. doi: 10.1016/0016-7037(77)90150-8

    CrossRef Google Scholar

    [88] Inoue T, Tanaka S. 10Be in marine sediments[J]. Earth and Planetary Science Letters, 1976, 29(1):155-160. doi: 10.1016/0012-821X(76)90035-2

    CrossRef Google Scholar

    [89] Tanaka S, Inoue T. 10Be evidence for geochemical events in the North Pacific during the Pliocene[J]. Earth and Planetary Science Letters, 1980, 49(1):34-38. doi: 10.1016/0012-821X(80)90147-8

    CrossRef Google Scholar

    [90] Peucker-Ehrenbrink B, Ravizza G E. Osmium isotope stratigraphy[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 239-257.

    Google Scholar

    [91] Peucker-Ehrenbrink B, Ravizza G E. Osmium isotope stratigraphy[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. The Geologic Time Scale. Amsterdam: Elsevier, 2012: 145-166.

    Google Scholar

    [92] Fu Y Z, Peng J T, Qu W J, et al. Os isotopic compositions of a cobalt-rich ferromanganese crust profile in Central Pacific[J]. Chinese Science Bulletin, 2005, 50(18):2106-2112. doi: 10.1360/982004-348

    CrossRef Google Scholar

    [93] Nozaki T, Ohta J, Noguchi T, et al. A Miocene impact ejecta layer in the pelagic Pacific Ocean[J]. Scientific Reports, 2019, 9(1):16111. doi: 10.1038/s41598-019-52709-1

    CrossRef Google Scholar

    [94] Ohta J, Yasukawa K, Nozaki T, et al. Fish proliferation and rare-earth deposition by topographically induced upwelling at the late Eocene cooling event[J]. Scientific Reports, 2020, 10(1):9896. doi: 10.1038/s41598-020-66835-8

    CrossRef Google Scholar

    [95] Helms P B, Riedel W R. Skeletal debris of fishes[M]//Initial Reports of the Deep Sea Drilling Project. 1971, 7: 1709-1720.

    Google Scholar

    [96] Sibert E C, Cramer K L, Hastings P A, et al. Methods for isolation and quantification of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) from marine sediments[J]. Palaeontologia Electronica, 2017, 20(1):1-14.

    Google Scholar

    [97] Doyle P, Kennedy G G, Riedel W. Stratignathy[M]//Davies T A, Luyendyk B P. Initial Reports of the Deep Sea Drilling Project. Washington: U. S. Goverment Printing Office, 1974, 26: 825-905.

    Google Scholar

    [98] Doyle P S, Riedel W R. Ichthyolith biostratigraphy of western north pacific pelagic clays, deep sea drilling project leg 86[M]//Heath G R, Burckle L H. Initial Reports of the Deep Sea Drilling Project. Washington: U. S. Goverment Printing Office, 1985, 86: 349-366.

    Google Scholar

    [99] Edgerton C C, Doyle P S, Riedel W R. Ichthyolith age determinations of otherwise unfossiliferous Deep Sea Drilling Project cores[J]. Micropaleontology, 1977, 23(2):194-205. doi: 10.2307/1485332

    CrossRef Google Scholar

    [100] Gottfried M D, Doyle P S, Riedel W R. Advances in ichthyolith stratigraphy of the Pacific Neogene and Oligocene[J]. Micropaleontology, 1984, 30(1):71-85. doi: 10.2307/1485457

    CrossRef Google Scholar

    [101] Tway L E, Doyle P S, Riedel W R. Correlation of dated and undated Pacific samples based on ichthyoliths and clustering techniques[J]. Micropaleontology, 1985, 31(4):295-319. doi: 10.2307/1485590

    CrossRef Google Scholar

    [102] Krishnaswami S. Authigenic transition elements in Pacific pelagic clays[J]. Geochimica et Cosmochimica Acta, 1976, 40(4):425-434. doi: 10.1016/0016-7037(76)90007-7

    CrossRef Google Scholar

    [103] Zhou L, Kyte F T. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of Deep Sea Drilling Project Hole 596[J]. Paleoceanography, 1992, 7(4):441-465. doi: 10.1029/92PA01063

    CrossRef Google Scholar

    [104] Opdyke N D, Channell J E T. Rock magnetic stratigraphy and paleointensities[J]. International Geophysics, 1996, 64:250-276.

    Google Scholar

    [105] Yamazaki T. Relative paleointensity of the geomagnetic field during Brunhes Chron recorded in North Pacific deep-sea sediment cores: orbital influence?[J]. Earth and Planetary Science Letters, 1999, 169(1-2):23-35. doi: 10.1016/S0012-821X(99)00064-3

    CrossRef Google Scholar

    [106] Tanaka E, Nakamura K, Yasukawa K, et al. Chemostratigraphy of deep-sea sediments in the western North Pacific Ocean: Implications for genesis of mud highly enriched in rare-earth elements and yttrium[J]. Ore Geology Reviews, 2020, 119:103392. doi: 10.1016/j.oregeorev.2020.103392

    CrossRef Google Scholar

    [107] Yamazaki T, Fu W, Shimono T, et al. Unmixing biogenic and terrigenous magnetic mineral components in red clay of the Pacific Ocean using principal component analyses of first-order reversal curve diagrams and paleoenvironmental implications[J]. Earth, Planets and Space, 2020, 72(1):120. doi: 10.1186/s40623-020-01248-5

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(696) PDF downloads(53) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint