2024 Vol. 44, No. 4
Article Contents

TANG Wu, XIE Xiaojun, XIONG Lianqiao, ZENG Qingbo, LIU Ziyu, XU Min. Characteristics of deep source-to-sink systems and sand prediction in Qiongdongnan Basin: A case study[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 123-133. doi: 10.16562/j.cnki.0256-1492.2023080902
Citation: TANG Wu, XIE Xiaojun, XIONG Lianqiao, ZENG Qingbo, LIU Ziyu, XU Min. Characteristics of deep source-to-sink systems and sand prediction in Qiongdongnan Basin: A case study[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 123-133. doi: 10.16562/j.cnki.0256-1492.2023080902

Characteristics of deep source-to-sink systems and sand prediction in Qiongdongnan Basin: A case study

  • To clearly understand the distribution patterns and sand richness in deep Paleogene fan bodies in the Qiongdongnan Basin, the third member of Lingshui Formation in the middle part of Songnan Low Uplift was studied in detail as an example by coupling analysis on the source-to-sink system. First, the provenance system and its evolution were determined by petrologic work, zircon dating, and tectonic balance profile. Secondly, the types and distribution of transport channels were characterized by utilizing fine 3D seismic interpretation for paleogeomorphological reconstruction. Thirdly, sedimentary system types and distribution patterns were clarified combining well and seismic data. Finally, multiple geophysical methods were used to predict sand richness in the sedimentary systems. Results show that the Songnan Low Uplift is an inherited paleo-uplift, where the main rock types were granite and monzogranite, plus a few granodiorite. The basement age spans 239~250 Ma. During the sedimentation period of the third member of the Lingshui Formation, an erosion area of 186 km2, being steep in the east flank and gentle in the west, was developed in the middle sector of Songnan Low Uplift. Separated by the watershed boundary line, the westward source area was about 141 km2, and could be divided into three secondary catchment units, in which three large ancient faulted troughs were developed from east to west correspondingly. The average width of the troughs is 2.88~3.23 km, the average depth is 0.25~0.5 km, and the width to depth ratio is 6.4~10.3. They are good channels for sediment transport, and three deltas were recognized in each trough. The seismic profiles show a clear progradational reflection structure along the source direction, and a lenticular reflection was observed perpendicular to the source direction. In addition, based on the comprehensive prediction of seismic facies, wave impedance inversion, and deep learning, the development of sand-rich deltas in the third member of the Lingshui Formation could form good reservoirs as a good pathway for deep buried-hill oil-and-gas migration, which is of great significance for deep oil-and-gas exploration in this area.

  • 加载中
  • [1] Allen P A, Hoffman P F. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation[J]. Nature, 2005, 433(7022):123-127. doi: 10.1038/nature03176

    CrossRef Google Scholar

    [2] Allen P A. From landscapes into geological history[J]. Nature, 2008, 451(7176):274-276. doi: 10.1038/nature06586

    CrossRef Google Scholar

    [3] Allen P A . Time scales of tectonic landscapes and their sediment routing systems[M] . London : Geological Society, Special Publications, 2008, 296(1): 7-28.

    Google Scholar

    [4] Sømme T O, Helland-Hansen W, Granjeon D. Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: icehouse versus greenhouse systems[J]. Geology, 2009, 37(7):587-590. doi: 10.1130/G25511A.1

    CrossRef Google Scholar

    [5] Sømme T O, Helland-Hansen W, Martinsen O J, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4):361-387. doi: 10.1111/j.1365-2117.2009.00397.x

    CrossRef Google Scholar

    [6] Sømme T O, Jackson C A L. Source-to-Sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: part 2-sediment dispersal and forcing mechanisms[J]. Basin Research, 2013, 2(5):512-531.

    Google Scholar

    [7] 林畅松. 盆地沉积动力学: 研究现状与未来发展趋势[J]. 石油与天然气地质, 2019, 40(4):685-700

    Google Scholar

    LIN Changsong. Sedimentary dynamics of basin: status and trend[J]. Oil & Gas Geology, 2019, 40(4):685-700.]

    Google Scholar

    [8] 王成善, 林畅松. 中国沉积学近十年来的发展现状与趋势[J]. 矿物岩石地球化学通报, 2021, 40(6):1217-1229

    Google Scholar

    WANG Chengshan, LIN Changsong. Development status and trend of sedimentology in China in recent ten years[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(6):1217-1229.]

    Google Scholar

    [9] Walsh J P, Wiberg P L, Aalto R, et al. Source-to-sink research: economy of the earth's surface and its strata[J]. Earth-Science Reviews, 2016, 153:1-6. doi: 10.1016/j.earscirev.2015.11.010

    CrossRef Google Scholar

    [10] 朱红涛, 朱筱敏, 刘强虎, 等. 层序地层学与源-汇系统理论内在关联性与差异性[J]. 石油与天然气地质, 2022, 43(4):763-776

    Google Scholar

    ZHU Hongtao, ZHU Xiaomin, LIU Qianghu, et al. Sequence stratigraphy and source-to-sink system: connections and distinctions[J]. Oil & Gas Geology, 2022, 43(4):763-776.]

    Google Scholar

    [11] 聂银兰, 朱筱敏, 董艳蕾, 等. 陆相断陷盆地源—汇系统要素表征及研究展望[J]. 地质论评, 2022, 68(5):1881-1896

    Google Scholar

    NIE Yinlan, ZHU Xiaomin, DONG Yanlei, et al. Characterization and research prospect of source-to-sink system elements in continental rift basin[J]. Geological Review, 2022, 68(5):1881-1896.]

    Google Scholar

    [12] 徐长贵. 陆相断陷盆地源-汇时空耦合控砂原理: 基本思想、概念体系及控砂模式[J]. 中国海上油气, 2013, 25(4):1-11,21

    Google Scholar

    XU Changgui. Controlling sand principle of source-sink coupling in time and space in continental rift basins: basic idea, conceptual systems and controlling sand models[J]. China Offshore Oil and Gas, 2013, 25(4):1-11,21.]

    Google Scholar

    [13] 徐长贵, 龚承林. 从层序地层走向源-汇系统的储层预测之路[J]. 石油与天然气地质, 2023, 44(3):521-538

    Google Scholar

    XU Changgui, GONG Chenglin. Predictive stratigraphy: from sequence stratigraphy to source-to-sink system[J]. Oil & Gas Geology, 2023, 44(3):521-538.]

    Google Scholar

    [14] 左倩媚, 张道军, 何卫军, 等. 琼东南盆地深水区中央峡谷黄流组物源特征[J]. 海洋学报, 2015, 37(5):15-23

    Google Scholar

    ZUO Qianmei, ZHANG Daojun, HE Weijun, et al. Provenance analysis of Huangliu formation of the central canyon system in the deepwater area of the Qiongdongnan Basin[J]. Haiyang Xuebao, 2015, 37(5):15-23.]

    Google Scholar

    [15] 谢玉洪, 李绪深, 范彩伟, 等. 琼东南盆地上中新统黄流组轴向水道源汇体系与天然气成藏特征[J]. 石油勘探与开发, 2016, 43(4):521-528,549

    Google Scholar

    XIE Yuhong, LI Xushen, FAN Caiwei, et al. The axial channel provenance system and natural gas accumulation of the Upper Miocene Huangliu formation in Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2016, 43(4):521-528,549.]

    Google Scholar

    [16] 张道军, 张迎朝, 邵磊, 等. 琼东南盆地中央峡谷沉积物源探讨[J]. 天然气地球科学, 2017, 28(10):1574-1581

    Google Scholar

    ZHANG Daojun, ZHANG Yingzhao, SHAO Lei, et al. Sedimentary provenance in the central canyon of Qiongdongnan Basin in the northern South China Sea[J]. Natural Gas Geoscience, 2017, 28(10):1574-1581.]

    Google Scholar

    [17] 甘军, 梁刚, 李兴, 等. 琼东南盆地梅山组海底扇天然气成因类型及成藏模式[J]. 地质学报, 2022, 96(3):1069-1078

    Google Scholar

    GAN Jun, LIANG Gang, LI Xing, et al. Genetic types and accumulation model of submarine fan gas in the Meishan formation, Qiongdongnan Basin[J]. Acta Geologica Sinica, 2022, 96(3):1069-1078.]

    Google Scholar

    [18] 修淳, 翟世奎, 霍素霞, 等. 琼东南盆地陵南低凸起崖城组沉积物源的地球化学与碎屑锆石U-Pb年龄记录[J]. 矿物岩石地球化学通报, 2018, 37(6):1102-1113

    Google Scholar

    XIU Chun, ZHAI Shikui, HUO Suxia, et al. Provenance of Sediments of the Yacheng formation in the Lingnan low uplift, Qiongdongnan Basin: evidences from U-Pb dating of detrital zircons and geochemistry of the sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(6):1102-1113.]

    Google Scholar

    [19] 邵磊, 崔宇驰, 乔培军, 等. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示[J]. 古地理学报, 2019, 21(2):216-231

    Google Scholar

    SHAO Lei, CUI Yuchi, QIAO Peijun, et al. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution[J]. Journal of Palaeogeography, 2019, 21(2):216-231.]

    Google Scholar

    [20] 周杰, 杨希冰, 杨金海, 等. 琼东南盆地松南低凸起古近系构造-沉积演化特征与天然气成藏[J]. 地球科学, 2019, 44(8):2704-2716

    Google Scholar

    ZHOU Jie, YANG Xibing, YANG Jinhai, et al. Structure-sedimentary evolution and gas accumulation of Paleogene in Songnan low uplift of the Qiongdongnan Basin[J]. Earth Science, 2019, 44(8):2704-2716.]

    Google Scholar

    [21] 施和生, 杨计海, 张迎朝, 等. 琼东南盆地地质认识创新与深水领域天然气勘探重大突破[J]. 中国石油勘探, 2019, 24(6):691-698

    Google Scholar

    SHI Hesheng, YANG Jihai, ZHANG Yingzhao, et al. Geological understanding innovation and major breakthrough to natural gas exploration in deep water in Qiongdongnan Basin[J]. China Petroleum Exploration, 2019, 24(6):691-698.]

    Google Scholar

    [22] 杨计海, 黄保家, 杨金海. 琼东南盆地深水区松南低凸起天然气成藏条件与勘探潜力[J]. 中国海上油气, 2019, 31(2):1-10

    Google Scholar

    YANG Jihai, HUANG Baojia, YANG Jinhai. Gas accumulation conditions and exploration potentials of natural gases in Songnan low uplift, deep water area of Qiongdongnan Basin[J]. China Offshore oil and Gas, 2019, 31(2):1-10.]

    Google Scholar

    [23] Lei C, Ren J Y. Hyper-extended rift systems in the Xisha trough, northwestern South China Sea: implications for extreme crustal thinning ahead of a propagating ocean[J]. Marine and Petroleum Geology, 2016, 77:846-864. doi: 10.1016/j.marpetgeo.2016.07.022

    CrossRef Google Scholar

    [24] 吴克强, 解习农, 裴健翔, 等. 超伸展陆缘盆地深部结构及油气勘探意义: 以琼东南盆地为例[J]. 石油与天然气地质, 2023, 44(3):651-661

    Google Scholar

    WU Keqiang, XIE Xinong, PEI Jianxiang, et al. Deep architecture of hyperextended marginal basin and implications for hydrocarbon exploration: a case study of Qiongdongnan Basin[J]. Oil & Gas Geology, 2023, 44(3):651-661.]

    Google Scholar

    [25] 甘军, 季洪泉, 梁刚, 等. 琼东南盆地中生界潜山天然气成藏模式[J]. 现代地质, 2022, 36(5):1242-1253

    Google Scholar

    GAN Jun, JI Hongquan, LIANG Gang, et al. Gas accumulation model of Mesozoic buried hill in Qiongdongnan Basin[J]. Geoscience, 2022, 36(5):1242-1253.]

    Google Scholar

    [26] 杨希冰, 周杰, 杨金海, 等. 琼东南盆地深水区东区中生界潜山天然气来源及成藏模式[J]. 石油学报, 2021, 42(3):283-292

    Google Scholar

    YANG Xibing, ZHOU Jie, YANG Jinhai, et al. Natural gas source and accumulation model of Mesozoic buried hill in the eastern deep water area of Qiongdongnan Basin[J]. Acta Petrolei Sinica, 2021, 42(3):283-292.]

    Google Scholar

    [27] Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1):1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x

    CrossRef Google Scholar

    [28] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1-2):59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [29] 朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源-汇系统要素耦合研究进展[J]. 地球科学, 2017, 42(11):1851-1870

    Google Scholar

    ZHU Hongtao, XU Changgui, ZHU Xiaomin, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11):1851-1870.]

    Google Scholar

    [30] 杨丽莎, 陈彬滔, 马轮, 等. 陆相湖盆坳陷期源—汇系统的要素特征及耦合关系: 以南苏丹Melut盆地北部坳陷新近系Jimidi 组为例[J]. 岩性油气藏, 2021, 33(3):27-38

    Google Scholar

    YANG Lisha, CHEN Bintao, MA Lun, et al. Element feature and coupling model of source-to-sink system in depression lacustrine basin: a case study of Neogene Jimidi formation in Melut Basin, south Sudan[J]. Lithologic Reservoirs, 2021, 33(3):27-38.]

    Google Scholar

    [31] 彭军, 周家雄, 隋波, 等. 利用岩性阻抗识别砂岩、泥岩以及砂体叠置: 以北部湾盆地涠洲A油田为例[J]. 海相油气地质, 2017, 22(1):89-94

    Google Scholar

    PENG Jun, ZHOU Jiaxiong, SUI Bo, et al. Identification of superimposed sandbody by using lithology impedance in Weizhou-a oilfield, Beibuwan Basin[J]. Marine Origin Petroleum Geology, 2017, 22(1):89-94.]

    Google Scholar

    [32] 秦童, 蔡纪琰, 李德郁, 等. 曲线重构技术在渤海Q油田储层精细预测中的应用[J]. 物探化探计算技术, 2018, 40(3):330-336

    Google Scholar

    QIN Tong, CAI Jiyan, LI Deyu, et al. Application of curve reconstruction technology in accurate reservoir prediction in Bohai Q oilfield[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(3):330-336.]

    Google Scholar

    [33] 杨凤丽, 周祖翼, 印兴耀, 等. 应用人工神经网络技术预测曲流河砂体分布[J]. 同济大学学报, 1999, 27(1):115-118

    Google Scholar

    YANG Fengli, ZHOU Zuyi, YIN Xingyao, et al. Prediction of meandering stream sandstone bodies using the artificial neural network technique[J]. Journal of Tongji University, 1999, 27(1):115-118.]

    Google Scholar

    [34] 邓运华, 兰蕾, 李友川, 等. 论三角洲对南海海相油气田分布的控制作用[J]. 石油学报, 2019, 40(S2):1-12

    Google Scholar

    DENG Yunhua, LAN Lei, LI Youchuan, et al. On the control effect of deltas on the distribution of marine oil and gas fields in the South China Sea[J]. Acta Petrolei Sinica, 2019, 40(S2):1-12.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(576) PDF downloads(32) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint