Citation: | WU Xiaoting, LI Yuguo, DUAN Shuangmin. The feasibility of marine CSEM method for detecting offshore freshened groundwater reservoirs[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 204-215. doi: 10.16562/j.cnki.0256-1492.2023071902 |
Offshore freshened groundwater (OFG) is a natural freshwater resource located mainly in the continental shelf region, from either onshore coastal aquifers or paleo-channels formed in sea-level lowstands. Conventional seismic methods have certain limitations in identifying salinity changes. Fortunately, the marine CSEM (controlled source electromagnetic method) is sensitive to high-resistivity thin layers, which is beneficial for detection of OFG by analyzing electromagnetic anomalies caused by the contrast of resistivity between the freshwater reservoirs and surrounding sediments. Paleo-channels in Shengsi in the Yangtze River estuary were studied. Based on the hydrogeological and logging data of "Shengsi No. 1 Well", a geoelectric model was established to analyze the marine CSEM responses. Results indicate that the marine CSEM could effectively detect electromagnetic anomalies caused by high-resistivity thin layers, and has good ability to locate underground freshwater reservoirs; its application for the detection of OFG in the Shengsi paleo-channel is feasible.
[1] | Kohout F A. Cyclic flow of salt water in the Biscayne aquifer of southeastern Florida[J]. Journal of Geophysical Research, 1960, 65(7):2133-2141. doi: 10.1029/JZ065i007p02133 |
[2] | Micallef A, Person M, Berndt C, et al. Offshore freshened groundwater in continental margins[J]. Reviews of Geophysics, 2021, 59(1):e2020RG000706. doi: 10.1029/2020RG000706 |
[3] | Weymer B A, Wernette P A, Everett M E, et al. Multi-layered high permeability conduits connecting onshore and offshore coastal aquifers[J]. Frontiers in Marine Science, 2020, 7:531293. doi: 10.3389/fmars.2020.531293 |
[4] | Bertoni C, Lofi J, Micallef A, et al. Seismic reflection methods in offshore groundwater research[J]. Geosciences, 2020, 10(8):299. doi: 10.3390/geosciences10080299 |
[5] | Lippert K, Tezkan B. On the exploration of a marine aquifer offshore Israel by long‐offset transient electromagnetics[J]. Geophysical Prospecting, 2020, 68(3):999-1015. doi: 10.1111/1365-2478.12875 |
[6] | Dimova N T, Swarzenski P W, Dulaiova H, et al. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seawater interface in two Hawaiian groundwater systems[J]. Journal of Geophysical Research:Oceans, 2012, 117(C2):C02012. |
[7] | Karabulut S, Cengiz M, Balkaya Ç, et al. Spatio-Temporal Variation of Seawater Intrusion (SWI) inferred from geophysical methods as an ecological indicator; A case study from Dikili, NW İzmir, Turkey[J]. Journal of Applied Geophysics, 2021, 189:104318. doi: 10.1016/j.jappgeo.2021.104318 |
[8] | Constable S. Review paper: instrumentation for marine magnetotelluric and controlled source electromagnetic sounding[J]. Geophysical Prospecting, 2013, 61(S1):505-532. doi: 10.1111/j.1365-2478.2012.01117.x |
[9] | De Biase M, Chidichimo F, Micallef A, et al. Past and future evolution of the onshore-offshore groundwater system of a carbonate archipelago: the case of the Maltese Islands, central Mediterranean Sea[J]. Frontiers in Water, 2023, 4:1068971. doi: 10.3389/frwa.2022.1068971 |
[10] | Cambareri T C, Eichner E M. Watershed delineation and ground water discharge to a coastal embayment[J]. Groundwater, 1998, 36(4):626-634. doi: 10.1111/j.1745-6584.1998.tb02837.x |
[11] | Levi E, Goldman M, Tibor G, et al. Delineation of subsea freshwater extension by marine geoelectromagnetic soundings (SE Mediterranean sea)[J]. Water Resources Management, 2018, 32(11):3765-3779. doi: 10.1007/s11269-018-2018-1 |
[12] | Pondthai P, Everett M E, Micallef A, et al. 3D characterization of a coastal freshwater aquifer in SE Malta (Mediterranean Sea) by time-domain electromagnetics[J]. Water, 2020, 12(6):1566. doi: 10.3390/w12061566 |
[13] | Attias E, Thomas D, Sherman D, et al. Marine electrical imaging reveals novel freshwater transport mechanism in Hawai'i[J]. Science Advances, 2020, 6(48):eabd4866. doi: 10.1126/sciadv.abd4866 |
[14] | Attias E, Constable S, Taylor B, et al. Deep submarine fresh water: a new resource for volcanic islands?[J]. Eos, 2021, 102:1-6. |
[15] | Evans R L, Law L K, St. Louis B, et al. Buried paleo-channels on the New Jersey continental margin: channel porosity structures from electromagnetic surveying[J]. Marine Geology, 2000, 170(3-4):381-394. doi: 10.1016/S0025-3227(00)00081-5 |
[16] | King R B, Danskin W R, Constable S, et al. Identification of fresh submarine groundwater off the coast of San Diego, USA, using electromagnetic methods[J]. Hydrogeology Journal, 2022, 30(3):965-973. doi: 10.1007/s10040-022-02463-y |
[17] | Hoefel F G, Evans R L. Impact of low salinity porewater on seafloor electromagnetic data: a means of detecting submarine groundwater discharge?[J]. Estuarine, Coastal and Shelf Science, 2001, 52(2):179-189. doi: 10.1006/ecss.2000.0718 |
[18] | Ishizu K, Ogawa Y. Offshore-onshore resistivity imaging of freshwater using a controlled-source electromagnetic method: a feasibility study[J]. Geophysics, 2021, 86(6):E391-E405. doi: 10.1190/geo2020-0906.1 |
[19] | Haroon A, Micallef A, Jegen M, et al. Electrical resistivity anomalies offshore a carbonate coastline: evidence for freshened groundwater?[J]. Geophysical Research Letters, 2021, 48(14):e2020GL091909. doi: 10.1029/2020GL091909 |
[20] | Sherman D, Kannberg P, Constable S. Surface towed electromagnetic system for mapping of subsea Arctic permafrost[J]. Earth and Planetary Science Letters, 2017, 460:97-104. doi: 10.1016/j.jpgl.2016.12.002 |
[21] | Gustafson C, Key K, Evans R L. Aquifer systems extending far offshore on the U. S. Atlantic margin[J]. Scientific Reports, 2019, 9(1):8709. doi: 10.1038/s41598-019-44611-7 |
[22] | Constable S, Kannberg P K, Weitemeyer K. Vulcan: a deep-towed CSEM receiver[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3):1042-1064. doi: 10.1002/2015GC006174 |
[23] | Dell'Aversana P. Improving interpretation of CSEM in shallow water[J]. The Leading Edge, 2007, 26(3):332-335. doi: 10.1190/1.2715058 |
[24] | Mittet R. Normalized amplitude ratios for frequency-domain CSEM in very shallow water[J]. First Break, 2008, 26(11):47-54. |
[25] | 何良军, 张藻, 楼颂平, 等. 物探在长江水下三角洲勘查淡水资源的重要作用和意义[J]. 上海地质, 2006(1):1-4 HE Liangjun, ZHANG Zao, LOU Songping, et al. The important function and significance of geophysical surveying technique in freshwater exploration in Changjiang underwater delta[J]. Shanghai Geology, 2006(1):1-4.] |
[26] | 李珍, 李杰, 李贞, 等. 浙江嵊泗海域第四纪沉积层序及承压水层位特征初探[J]. 上海地质, 2008(2):7-13,38 LI Zhen, LI Jie, LI Zhen, et al. The primary research on the Quaternary stratigraphic sequence and the characteristics of the water-bearing stratum in the sea of Shengsi Area Zhejiang Province[J]. Shanghai Geology, 2008(2):7-13,38.] |
[27] | 韩月. 舟山北部海域海底第四系水文地质条件研究[D]. 中国海洋大学硕士学位论文, 2012 HAN Yue. Study on quaternary hydrogeology conditions in Northern Zhoushan Sea Area[D]. Master Dissertation of Ocean University of China, 2012.] |
[28] | 孙建国. 阿尔奇(Archie)公式: 提出背景与早期争论[J]. 地球物理学进展, 2007, 22(2):472-486 doi: 10.3969/j.issn.1004-2903.2007.02.020 SUN Jianguo. Archie's formula: historical background and earlier debates[J]. Progress in Geophysics, 2007, 22(2):472-486.] doi: 10.3969/j.issn.1004-2903.2007.02.020 |
[29] | Salem H S, Chilingarian G V. The cementation factor of Archie's equation for shaly sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 1999, 23(2):83-93. doi: 10.1016/S0920-4105(99)00009-1 |
[30] | 王振宇. 浙江嵊泗海域海底淡水资源初探[J]. 上海地质, 2005(3):16-21 WANG Zhenyu. The offshore fresh water exploration in Chengsi, Zhejiang Province[J]. Shanghai Geology, 2005(3):16-21.] |
[31] | 韩月, 张志忠, 何兵寿. 舟山北部海域海底淡水资源研究现状[J]. 海洋地质前沿, 2012, 28(8):43-48 HAN Yue, ZHANG Zhizhong, HE Bingshou. Preliminary research of submarine freshwater resources off northern Zhoushan islands[J]. Marine Geology Frontiers, 2012, 28(8):43-48.] |
[32] | 刘婷婷, 李予国. 海洋可控源电磁法对天然气水合物高阻薄层的可探测度[J]. 海洋地质前沿, 2015, 31(6):17-22 LIU Tingting, LI Yuguo. Detectivity of high-resistivity gas hydrate layers with marine CSEM method[J]. Marine Geology Frontiers, 2015, 31(6):17-22.] |
Location of the logging sites in the northern Zhoushan sea area[27]
Coupled relationship between porosity and
Schematic diagram of geoelectric models of OFG in paleo-channels in Shengsi in Yangtze River.
Marine CSEM response of the OFG resistivity model
electric field response curves of CSEM for the OFG resistivity model in 6 excited frequencies
Schematic diagram of resistivity model of OFG with different burial depths
Marine CSEM detectivity in resistivity model of OFG at different burial depths
Schematic diagram of resistivity model of OFG in different layer thicknesses
Marine CSEM detectivity of resistivity model of OFG in different layer thicknesses
Schematic diagram of resistivity model of OFG in different layer intervals
Marine CSEM detectivity of resistivity model of OFG in different layer intervals