2023 Vol. 43, No. 6
Article Contents

WANG Tingnan, HE Juan, JIA Jiayuan, JIA Guodong, CHEN Lingdi, LI Li. Characteristics and comparison of algal biomarkers in seawater and sediments of the East China Sea shelf[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 86-102. doi: 10.16562/j.cnki.0256-1492.2023040601
Citation: WANG Tingnan, HE Juan, JIA Jiayuan, JIA Guodong, CHEN Lingdi, LI Li. Characteristics and comparison of algal biomarkers in seawater and sediments of the East China Sea shelf[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 86-102. doi: 10.16562/j.cnki.0256-1492.2023040601

Characteristics and comparison of algal biomarkers in seawater and sediments of the East China Sea shelf

More Information
  • Major algal biomarkers brassicasterol, dinosterol, and long-chain alkenones, representing diatoms, dinoflagellates, and haptophytes, respectively, were analyzed in seasonal suspended particles and surface sediments near Hangzhou Bay in the inland shelf of the East China Sea. The distribution characteristics and controlling factors of algal biomarkers in particles and sediments were studied. Results show that the spatial distribution characteristics of algal biomarkers in the surface sediments of the East China Sea inland shelf are obvious, and the abundances of algal biomarkers increase with the increase of water depth. The seasonal variation of algal biomarkers in particles is prominent, and the highest abundance in summer samples. Consistent with the results of previous studies, the temporal and spatial changes of biomarkers are mainly controlled by the changes of algae productivity. Due to the abundance of nutrients, high primary productivity is mainly distributed in the waters where the dilute water away from estuaries meets offshore currents. In summer, the coastal phytoplankton productivity is the highest due to the increased influence of nutrients carried by the diluted water of the Yangtze River. In addition, our results show a significant difference between the dominant sterols in surface sediments and particles. Brassicasterols dominate in particles, while dinosterols dominate in surface sediments. In addition to the common knowledge that the organic matter in particles mainly reflects the transient nature of local sites and in the surface sediment reflects the multi-year average of a wider area, we believed that the possible late hydrogenation of brassicasterol in sediments has a significant effect, leading to a significant decrease in brassicasterol abundances relative to dinosterol in the sediments. This study emphasized the complexity of sedimentary history of biomarkers in sediments. It is important to understand the relative changes of biomarkers in surface sediments for accurate interpretation of biomarkers in sedimentary records.

  • 加载中
  • [1] Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production[J]. Science, 1998, 281(5374): 200-206. doi: 10.1126/science.281.5374.200

    CrossRef Google Scholar

    [2] Muller-Karger F E, Varela R, Thunell R, et al. The importance of continental margins in the global carbon cycle[J]. Geophysical Research Letters, 2005, 32(1): L01602.

    Google Scholar

    [3] Dai M H, Su J Z, Zhao Y Y, et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends[J]. Annual Review of Earth and Planetary Sciences, 2022, 50(1): 593-626. doi: 10.1146/annurev-earth-032320-090746

    CrossRef Google Scholar

    [4] Guo S J, Feng Y Y, Wang L, et al. Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea[J]. Marine Ecology Progress Series, 2014, 516: 103-126. doi: 10.3354/meps10952

    CrossRef Google Scholar

    [5] Liu X, Xiao W P, Landry M R, et al. Responses of phytoplankton communities to environmental variability in the East China Sea[J]. Ecosystems, 2016, 19(5): 832-849. doi: 10.1007/s10021-016-9970-5

    CrossRef Google Scholar

    [6] Fang F T, Zhu Z Y, Ge J Z, et al. Reconstruction of the main phytoplankton population off the Changjiang Estuary in the East China Sea and its assemblage shift in recent decades: from observations to simulation[J]. Marine Pollution Bulletin, 2022, 178: 113638. doi: 10.1016/j.marpolbul.2022.113638

    CrossRef Google Scholar

    [7] Furuya K, Hayashi M, Yabushita Y, et al. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 367-387. doi: 10.1016/S0967-0645(02)00460-5

    CrossRef Google Scholar

    [8] Gong G C, Wen Y H, Wang B W, et al. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6-7): 1219-1236. doi: 10.1016/S0967-0645(03)00019-5

    CrossRef Google Scholar

    [9] Zhu Z Y, Ng W M, Liu S M, et al. Estuarine phytoplankton dynamics and shift of limiting factors: a study in the Changjiang (Yangtze River) Estuary and adjacent area[J]. Estuarine, Coastal and Shelf Science, 2009, 84(3): 393-401. doi: 10.1016/j.ecss.2009.07.005

    CrossRef Google Scholar

    [10] Yamaguchi H, Kim H C, Son Y B, et al. Seasonal and summer interannual variations of SeaWiFS chlorophyll a in the Yellow Sea and East China Sea[J]. Progress in Oceanography, 2012, 105: 22-29. doi: 10.1016/j.pocean.2012.04.004

    CrossRef Google Scholar

    [11] Zhou W H, Yin K D, Long A M, et al. Spatial-temporal variability of total and size-fractionated phytoplankton biomass in the Yangtze River Estuary and adjacent East China Sea coastal waters, China[J]. Aquatic Ecosystem Health & Management, 2012, 15(2): 200-209.

    Google Scholar

    [12] Chen J, Liu J L. The spatial and temporal changes of chlorophyll-a and suspended matter in the eastern coastal zones of China during 1997–2013[J]. Continental Shelf Research, 2015, 95: 89-98. doi: 10.1016/j.csr.2015.01.004

    CrossRef Google Scholar

    [13] Zhang H L, Qiu Z F, Sun D Y, et al. Seasonal and interannual variability of satellite-derived chlorophyll-a (2000–2012) in the Bohai Sea, China[J]. Remote Sensing, 2017, 9(6): 582. doi: 10.3390/rs9060582

    CrossRef Google Scholar

    [14] Liu K K, Chao S Y, Lee H J, et al. Seasonal variation of primary productivity in the East China Sea: a numerical study based on coupled physical-biogeochemical model[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(19-20): 1762-1782. doi: 10.1016/j.dsr2.2010.04.003

    CrossRef Google Scholar

    [15] Wu P, Bi R, Duan S S, et al. Spatiotemporal variations of phytoplankton in the East China Sea and the Yellow Sea revealed by lipid biomarkers[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(1): 109-125. doi: 10.1002/2015JG003167

    CrossRef Google Scholar

    [16] Furuya K, Kurita K, Odate T. Distribution of phytoplankton in the East China Sea in the winter of 1993[J]. Journal of Oceanography, 1996, 52(3): 323-333. doi: 10.1007/BF02235927

    CrossRef Google Scholar

    [17] 赖俊翔, 俞志明, 宋秀贤, 等. 长江口及邻近海域浮游植物色素分布与群落结构特征[J]. 环境科学, 2013, 34(9): 3405-3415 doi: 10.13227/j.hjkx.2013.09.021

    CrossRef Google Scholar

    LAI Junxiang, YU Zhiming, SONG Xiuxian, et al. Phytoplankton pigment patterns and community structure in the Yangtze Estuary and its adjacent areas[J]. Environmental Science, 2013, 34(9): 3405-3415. doi: 10.13227/j.hjkx.2013.09.021

    CrossRef Google Scholar

    [18] Luan Q S, Sun J, Shen Z L, et al. Phytoplankton assemblage of Yangtze River Estuary and the adjacent east China sea in summer, 2004[J]. Journal of Ocean University of China, 2006, 5(2): 123-131. doi: 10.1007/BF02919210

    CrossRef Google Scholar

    [19] 王丹, 孙军, 周锋, 等. 2006年6月长江口低氧区及邻近水域浮游植物[J]. 海洋与湖沼, 2008, 39(6): 619-627 doi: 10.3321/j.issn:0029-814X.2008.06.012

    CrossRef Google Scholar

    WANG Dan, SUN Jun, ZHOU Feng, et al. Phytoplankton of Changjiang (Yangtze River) estuary hypoxia area and the adjacent East China Sea in June 2006[J]. Oceanologia et Limnologia Sinica, 2008, 39(6): 619-627. doi: 10.3321/j.issn:0029-814X.2008.06.012

    CrossRef Google Scholar

    [20] Jiang Z B, Chen J F, Zhou F, et al. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf[J]. Continental Shelf Research, 2015, 101: 71-84. doi: 10.1016/j.csr.2015.04.009

    CrossRef Google Scholar

    [21] Zhou Z X, Yu R C, Sun C J, et al. Impacts of Changjiang River discharge and kuroshio intrusion on the diatom and dinoflagellate blooms in the East China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 5244-5257. doi: 10.1029/2019JC015158

    CrossRef Google Scholar

    [22] Kong C E, Yoo S, Jang C J. East China Sea ecosystem under multiple stressors: heterogeneous responses in the sea surface chlorophyll-a[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 151: 103078. doi: 10.1016/j.dsr.2019.103078

    CrossRef Google Scholar

    [23] Lin Y C, Chung C C, Gong G C, et al. Diversity and abundance of haptophytes in the East China Sea[J]. Aquatic Microbial Ecology, 2014, 72(3): 227-240. doi: 10.3354/ame01697

    CrossRef Google Scholar

    [24] Ye Q, Wu Y, Zhu Z Y, et al. Bacterial diversity in the surface sediments of the hypoxic zone near the Changjiang Estuary and in the East China Sea[J]. Microbiologyopen, 2016, 5(2): 323-339. doi: 10.1002/mbo3.330

    CrossRef Google Scholar

    [25] Wu D M, Dai Q P, Liu X Z, et al. Comparison of bacterial community structure and potential functions in hypoxic and non-hypoxic zones of the Changjiang Estuary[J]. PLoS One, 2019, 14(6): e0217431. doi: 10.1371/journal.pone.0217431

    CrossRef Google Scholar

    [26] Xu L J, Yang D Z, Greenwood J, et al. Riverine and oceanic nutrients govern different algal bloom domain near the Changjiang estuary in summer[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(10): e2020JG005727.

    Google Scholar

    [27] Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008, 275(1-2): 1-16. doi: 10.1016/j.jpgl.2008.07.012

    CrossRef Google Scholar

    [28] Castañeda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30(21-22): 2851-2891. doi: 10.1016/j.quascirev.2011.07.009

    CrossRef Google Scholar

    [29] Jeng W L, Huh C A. Lipids in suspended matter and sediments from the East China Sea Shelf[J]. Organic Geochemistry, 2004, 35(5): 647-660. doi: 10.1016/j.orggeochem.2003.12.002

    CrossRef Google Scholar

    [30] 张海龙, 邢磊, 赵美训, 等. 东海和黄海表层沉积物生物标志物的分布特征及古生态重建潜力[J]. 中国海洋大学学报, 2008, 38(6): 992-996

    Google Scholar

    ZHANG Hailong, XING Lei, ZHAO Meixun, et al. Distribution of biomarkers in surface sediments of the East China and Yellow Seas and its potential for paleoecology reconstruction[J]. Periodical of Ocean University of China, 2008, 38(6): 992-996.

    Google Scholar

    [31] Xing L, Zhang H L, Yuan Z N, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1106-1115. doi: 10.1016/j.csr.2011.04.003

    CrossRef Google Scholar

    [32] 姜一晴, 邢磊, 张彭辉, 等. 长江口及东海陆架区颗粒物和沉积物中类脂生物标志物的对比研究[J]. 地球环境学报, 2012, 3(4): 982-994 doi: 10.7515/JEE201204008

    CrossRef Google Scholar

    JIANG Yiqing, XING Lei, ZHANG Penghui, et al. Comparisons of lipid biomarkers from suspended particulates and sediments in the Changjiang Estuary and the East China Sea shelf[J]. Journal of Earth Environment, 2012, 3(4): 982-994. doi: 10.7515/JEE201204008

    CrossRef Google Scholar

    [33] 李凤, 贺行良, 徐刚, 等. 东海近岸表层沉积物中脂肪酸与脂肪醇的组成以及分布与来源[J]. 海洋地质与第四纪地质, 2016, 36(4): 13-18 doi: 10.16562/j.cnki.0256-1492.2016.04.002

    CrossRef Google Scholar

    LI Feng, HE Xingliang, XU Gang, et al. Composition, distribution and source of fatty acids and fatty alcohols in marine surface sediments of the East China Sea[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 13-18. doi: 10.16562/j.cnki.0256-1492.2016.04.002

    CrossRef Google Scholar

    [34] 陈曦, 毕蓉, 张海龙, 等. 2013年和2011年夏季南黄海和东海表层悬浮颗粒物中生物标志物的对比分析[J]. 中国海洋大学学报, 2017, 47(8): 103-111

    Google Scholar

    CHEN Xi, BI Rong, ZHANG Hailong, et al. Contrastive analysis of biomarkers in suspended particles in the southern Yellow Sea and East China Sea between the summer of 2013 and 2011[J]. Periodical of Ocean University of China, 2017, 47(8): 103-111.

    Google Scholar

    [35] Bi R, Chen X, Zhang J, et al. Water mass control on phytoplankton spatiotemporal variations in the northeastern East China Sea and the Western Tsushima strait revealed by lipid biomarkers[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(4): 1318-1332. doi: 10.1002/2017JG004340

    CrossRef Google Scholar

    [36] Cao Y L, Bi R, Wang X C, et al. The sources and burial of marine organic carbon in the Eastern China marginal seas[J]. Frontiers in Marine Science, 2022, 9: 824181. doi: 10.3389/fmars.2022.824181

    CrossRef Google Scholar

    [37] 王妃, 邢磊, 张海龙, 等. 类脂生物标志物重建近150年来东海陆架区DH5-1站位浮游植物生态结构及陆源输入的变化[J]. 中国海洋大学学报, 2012, 42(11): 66-72

    Google Scholar

    WANG Fei, XING Lei, ZHANG Hailong, et al. Applications of lipid biomarkers for reconstructing changes of phytoplankton ecological structure and terrestrial input in core DH5-1 from the shelf of the East China Sea during the last 150 years[J]. Periodical of Ocean University of China, 2012, 42(11): 66-72.

    Google Scholar

    [38] Xing L, Zhao M X, Zhang T, et al. Ecosystem responses to anthropogenic and natural forcing over the last 100 years in the coastal areas of the East China Sea[J]. The Holocene, 2016, 26(5): 669-677. doi: 10.1177/0959683615618248

    CrossRef Google Scholar

    [39] Lian E G, Yang S Y, Wu H, et al. Kuroshio subsurface water feeds the wintertime Taiwan Warm Current on the inner East China Sea shelf[J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 4790-4803. doi: 10.1002/2016JC011869

    CrossRef Google Scholar

    [40] Zhang W X, Wu H, Hetland R D, et al. on mechanisms controlling the seasonal hypoxia hot spots off the Changjiang river estuary[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 8683-8700. doi: 10.1029/2019JC015322

    CrossRef Google Scholar

    [41] Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390: 270-281. doi: 10.1016/j.margeo.2017.06.004

    CrossRef Google Scholar

    [42] Zhao B, Yao P, Bianchi T S, et al. Controls on organic carbon burial in the Eastern China marginal seas: a regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006608.

    Google Scholar

    [43] Volkman J. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 495-506. doi: 10.1007/s00253-002-1172-8

    CrossRef Google Scholar

    [44] 丁玲, 邢磊, 赵美训, 等. 东海陆架区悬浮颗粒物中浮游植物生物标志物比例及种群结构意义[J]. 中国海洋大学学报, 2007, 37(S2): 143-148

    Google Scholar

    DING Ling, XING Lei, ZHAO Meixun, et al. Phytoplankton biomarker ratios in suspended particles from the continental shelf of the East China Sea and their implications in community structure reconstruction[J]. Periodical of Ocean University of China, 2007, 37(S2): 143-148.

    Google Scholar

    [45] Yang D Z, Yin B S, Sun J C, et al. Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer[J]. Journal of Marine Systems, 2013, 123-124: 1-18. doi: 10.1016/j.jmarsys.2013.04.002

    CrossRef Google Scholar

    [46] Tseng Y F, Lin J, Dai M, et al. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River[J]. Biogeosciences, 2014, 11(2): 409-423. doi: 10.5194/bg-11-409-2014

    CrossRef Google Scholar

    [47] Duan L Q, Song J M, Yuan H M, et al. The use of sterols combined with isotope analyses as a tool to identify the origin of organic matter in the East China Sea[J]. Ecological Indicators, 2017, 83: 144-157. doi: 10.1016/j.ecolind.2017.07.042

    CrossRef Google Scholar

    [48] Deng B, Zhang J, Wu Y. Recent sediment accumulation and carbon burial in the East China Sea[J]. Global Biogeochemical Cycles, 2006, 20(3): GB3014.

    Google Scholar

    [49] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013

    CrossRef Google Scholar

    [50] Wang C L, Hao Z, Gao J H, et al. Reservoir construction has reduced organic carbon deposition in the East China Sea by Half Since 2006[J]. Geophysical Research Letters, 2020, 47(17): e2020GL087357.

    Google Scholar

    [51] Bai Y, He X Q, Pan D L, et al. Summertime Changjiang River plume variation during 1998-2010[J]. Journal of Geophysical Research: Oceans, 2014, 119(9): 6238-6257. doi: 10.1002/2014JC009866

    CrossRef Google Scholar

    [52] Tian R C, Sicre M A, Saliot A. Aspects of the geochemistry of sedimentary sterols in the Chang Jiang estuary[J]. Organic Geochemistry, 1992, 18(6): 843-850. doi: 10.1016/0146-6380(92)90052-Y

    CrossRef Google Scholar

    [53] Harvey H R, Macko S A. Kinetics of phytoplankton decay during simulated sedimentation: changes in lipids under oxic and anoxic conditions[J]. Organic Geochemistry, 1997, 27(3-4): 129-140. doi: 10.1016/S0146-6380(97)00077-6

    CrossRef Google Scholar

    [54] Wakeham S. Diagenesis of organic matter at the water-sediment interface[M]//Gianguzza A, Pelizzetti E, Sammartano S. Chemistry of Marine Water and Sediments. Berlin, Heidelberg: Springer, 2002: 147-164.

    Google Scholar

    [55] Bao R, McIntyre C, Zhao M X, et al. Widespread dispersal and aging of organic carbon in shallow marginal seas[J]. Geology, 2016, 44(10): 791-794. doi: 10.1130/G37948.1

    CrossRef Google Scholar

    [56] Wu X D, Wu B, Jiang M Y, et al. Distribution, sources and burial flux of sedimentary organic matter in the East China Sea[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1488-1501. doi: 10.1007/s00343-020-0037-2

    CrossRef Google Scholar

    [57] Sun M Y, Wakeham S G. A study of oxic/anoxic effects on degradation of sterols at the simulated sediment-water interface of coastal sediments[J]. Organic Geochemistry, 1998, 28(12): 773-784. doi: 10.1016/S0146-6380(98)00043-6

    CrossRef Google Scholar

    [58] Wakeham S G, Canuel E A. Degradation and preservation of organic matter in marine sediments[M]//Volkman J K. Marine Organic Matter: Biomarkers, Isotopes and DNA. Berlin, Heidelberg: Springer, 2006: 295-321.

    Google Scholar

    [59] Gaskell S J, Eglinton G. Rapid hydrogenation of sterols in a contemporary lacustrine sediment[J]. Nature, 1975, 254(5497): 209-211.

    Google Scholar

    [60] Gagosian R B, Smith S O, Lee C, et al. Steroid transformations in Recent marine sediments[J]. Physics and Chemistry of the Earth, 1980, 12: 407-419. doi: 10.1016/0079-1946(79)90122-8

    CrossRef Google Scholar

    [61] Gagosian R B, Heinzer F. Stenols and stanols in the oxic and anoxic waters of the Black Sea[J]. Geochimica et Cosmochimica Acta, 1979, 43(4): 471-486. doi: 10.1016/0016-7037(79)90159-5

    CrossRef Google Scholar

    [62] Wakeham S G. Reduction of stenols to stanols in particulate matter at oxic-anoxic boundaries in sea water[J]. Nature, 1989, 342(6251): 787-790. doi: 10.1038/342787a0

    CrossRef Google Scholar

    [63] Wakeham S G. Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water columns of the ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(10): 1749-1771. doi: 10.1016/0967-0637(95)00074-G

    CrossRef Google Scholar

    [64] Sheridan C C, Lee C, Wakeham S G, et al. Suspended particle organic composition and cycling in surface and midwaters of the equatorial Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(11): 1983-2008. doi: 10.1016/S0967-0637(02)00118-8

    CrossRef Google Scholar

    [65] Tolosa I, LeBlond N, Copin-Montégut C, et al. Distribution of sterol and fatty alcohol biomarkers in particulate matter from the frontal structure of the Alboran Sea (S. W. Mediterranean Sea)[J]. Marine Chemistry, 2003, 82(3-4): 161-183. doi: 10.1016/S0304-4203(03)00051-3

    CrossRef Google Scholar

    [66] Gagosian R B, Lee C, Heinzer F. Processes controlling the stanol/stenol ratio in Black Sea seawater and sediments[J]. Nature, 1979, 280(5723): 574-576. doi: 10.1038/280574a0

    CrossRef Google Scholar

    [67] Smith D J, Eglinton G, Morris R J, et al. Aspects of the steroid geochemistry of an interfacial sediment from the Peruvian upwelling[J]. Oceanologica Acta, 1983, 6(2): 211-219.

    Google Scholar

    [68] Wakeham S G, Hedges J I, Lee C, et al. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1997, 44(9-10): 2131-2162. doi: 10.1016/S0967-0645(97)00035-0

    CrossRef Google Scholar

    [69] Arzayus K M, Canuel E A. Organic matter degradation in sediments of the York River estuary: effects of biological vs. physical mixing[J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 455-464. doi: 10.1016/j.gca.2004.06.029

    CrossRef Google Scholar

    [70] Nishimura M, Koyama T. The occurrence of stanols in various living organisms and the behavior of sterols in contemporary sediments[J]. Geochimica et Cosmochimica Acta, 1977, 41(3): 379-385. doi: 10.1016/0016-7037(77)90265-4

    CrossRef Google Scholar

    [71] Nishimura M. 5β-isomers of stanols and stanones as potential markers of sedimentary organic quality and depositional paleoenvironments[J]. Geochimica et Cosmochimica Acta, 1982, 46(3): 423-432. doi: 10.1016/0016-7037(82)90233-2

    CrossRef Google Scholar

    [72] Zhou F, Chai F, Huang D J, et al. Coupling and decoupling of high biomass phytoplankton production and hypoxia in a highly dynamic coastal system: the Changjiang (Yangtze River) estuary[J]. Frontiers in Marine Science, 2020, 7: 259. doi: 10.3389/fmars.2020.00259

    CrossRef Google Scholar

    [73] Canuel E A, Martens C S. Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment-water interface[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1793-1806. doi: 10.1016/0016-7037(96)00045-2

    CrossRef Google Scholar

    [74] 王鹏, 吴莹, 刘素美, 等. 长江口外低氧区及其邻近海域表层沉积物反硝化微生物多样性和分布特征[J]. 微生物学报, 2021, 61(6): 1474-1487 doi: 10.13343/j.cnki.wsxb.20200791

    CrossRef Google Scholar

    WANG Peng, WU Ying, LIU Sumei, et al. Diversity and distribution of denitrifying microorganisms in the surface sediments of the hypoxic zone near the Changjiang Estuary and its offshore[J]. Acta Microbiologica Sinica, 2021, 61(6): 1474-1487. doi: 10.13343/j.cnki.wsxb.20200791

    CrossRef Google Scholar

    [75] 吕晓霞, 翟世奎. 长江口柱状沉积物中甾醇的组成特征及其地球化学意义[J]. 海洋学报, 2006, 28(4): 96-101

    Google Scholar

    LÜ Xiaoxia, ZHAI Shikui. The distributions and geochemistry of sterols in core sediment from the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2006, 28(4): 96-101.

    Google Scholar

    [76] 姜善春, 贾蓉芬, 王岩, 等. 中国南海北部湾海洋柱状沉积物中甾烯醇甾烷醇的演化[J]. 沉积学报, 1991, 9(S1): 97-102 doi: 10.14027/j.cnki.cjxb.1991.s1.013

    CrossRef Google Scholar

    JIANG Shanchun, JIA Rongfen, WANG Yan, et al. The evolution of stenols and stanols in marine sediment core from Beibuwan gulf, South China Sea[J]. Acta Sedimentologica Sinica, 1991, 9(S1): 97-102. doi: 10.14027/j.cnki.cjxb.1991.s1.013

    CrossRef Google Scholar

    [77] 段毅, 崔明中, 马兰华. 南沙海域中大陆坡沉积物中甾醇的地球化学研究[J]. 地球化学, 1998, 27(1): 74-80 doi: 10.3321/j.issn:0379-1726.1998.01.009

    CrossRef Google Scholar

    DUAN Yi, CUI Mingzhong, MA Lanhua. Geochemistry of sterols in marine sediments from the middle continental slope of Nansha sea[J]. Geochimica, 1998, 27(1): 74-80. doi: 10.3321/j.issn:0379-1726.1998.01.009

    CrossRef Google Scholar

    [78] Qiu H, Zou L, Zhang M S, et al. Occurrence of different forms and implications of compound specific sterols in continental sediments of the northeast South China Sea[J]. Acta Geologica Sinica - English Edition, 2019, 93(2): 420-429. doi: 10.1111/1755-6724.13775

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(1596) PDF downloads(157) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint