2024 Vol. 44, No. 4
Article Contents

ZHANG Zihan, REN Yupeng, TAO Wei, XU Guohui, JIN Zikun. Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 78-87. doi: 10.16562/j.cnki.0256-1492.2023032301
Citation: ZHANG Zihan, REN Yupeng, TAO Wei, XU Guohui, JIN Zikun. Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 78-87. doi: 10.16562/j.cnki.0256-1492.2023032301

Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon

More Information
  • High-speed turbidity currents are very destructive and threaten the safety of seabed constructions. An important channel for turbidity currents to move to the deep sea is submarine canyons, of which many have multiple branches. Once a branch meets the canyon with turbidity currents, the sand content and the velocity of turbidity currents could be increased, and so the destructive power. We studied the changes in sand content and movement velocity of turbidity currents in branch canyons converging into the main canyon, to which the scenario of turbidity currents in main-canyon-only was compared. Result show that the height, sand content and velocity of turbidity currents were increased at the head when confluence occurred, and decreased after the confluence occurred. However, the sand content and the velocity were still larger than those without confluence. This study provided guidelines for site selection and velocity calculation for field monitoring when turbidity currents confluence occurs in branch canyons.

  • 加载中
  • [1] 徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10):98-105

    Google Scholar

    XU Jingping. Turbidity current research in the past century: an overview[J]. Periodical of Ocean University of China, 2014, 44(10):98-105.]

    Google Scholar

    [2] Heerema C J, Talling P J, Cartigny M J, et al. What determines the downstream evolution of turbidity currents?[J]. Earth and Planetary Science Letters, 2020, 532:116023. doi: 10.1016/j.jpgl.2019.116023

    CrossRef Google Scholar

    [3] 许莎莎, 冯秀丽, 冯利, 等. 南海西北部莺琼陆坡36.6 ka以来的浊流沉积[J]. 海洋地质与第四纪地质, 2020, 40(5):15-24

    Google Scholar

    XU Shasha, FENG Xiuli, FENG Li, et al. Turbidite records since 36.6 ka at the Yingqiong continental slope in the Northwest of South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5):15-24.]

    Google Scholar

    [4] Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8):675-678. doi: 10.1130/G45178.1

    CrossRef Google Scholar

    [5] 郑旭峰, 李安春, 万世明, 等. 冲绳海槽中全新世的浊流沉积及其控制因素[J]. 第四纪研究, 2014, 34(3):579-589 doi: 10.3969/j.issn.1001-7410.2014.03.12

    CrossRef Google Scholar

    ZHENG Xufeng, LI Anchun, WAN Shiming, et al. The turbidity events in Okinawa trough during middle Holocene and its potential dominating mechanisms[J]. Quaternary Sciences, 2014, 34(3):579-589.] doi: 10.3969/j.issn.1001-7410.2014.03.12

    CrossRef Google Scholar

    [6] Inman D L, Nordstrom C E, Flick R E. Currents in submarine canyons: an air-sea-land interaction[J]. Annual Review of Fluid Mechanics, 1976, 8:275-310. doi: 10.1146/annurev.fl.08.010176.001423

    CrossRef Google Scholar

    [7] 徐景平. 科学与技术并进: 近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5):552-558

    Google Scholar

    XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5):552-558.]

    Google Scholar

    [8] Carter L, Gavey R, Talling P J, et al. Insights into submarine geohazards from breaks in subsea telecommunication cables[J]. Oceanography, 2014, 27(2):58-67. doi: 10.5670/oceanog.2014.40

    CrossRef Google Scholar

    [9] Wang X X, Cai F, Sun Z L, et al. Tectonic and oceanographic controls on the slope-confined dendritic canyon system in the Dongsha Slope, South China Sea[J]. Geomorphology, 2022, 410:108285. doi: 10.1016/j.geomorph.2022.108285

    CrossRef Google Scholar

    [10] 李梦君, 毕乃双, 胡丽沙, 等. 南海北部台湾峡谷“蛟龙号”第140潜次沉积物特征及其沉积过程指示意义[J]. 海洋地质与第四纪地质, 2019, 39(4):23-33

    Google Scholar

    LI Mengjun, BI Naishang, HU Lisha, et al. Sedimentary characteristics and processes revealed by the push cores of the 140th dive of DSV "Jiaolong" in the Taiwan Submarine Canyon, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(4):23-33.]

    Google Scholar

    [11] 王长盛, 朱俊江, 赵冬冬, 等. 全球海底峡谷成因及演化研究[J]. 海洋地质前沿, 2021, 37(3):1-15

    Google Scholar

    WANG Changsheng, ZHU Junjiang, ZHAO Dongdong, et al. Origin and evolution of submarine canyons[J]. Marine Geology Frontiers, 2021, 37(3):1-15.]

    Google Scholar

    [12] Yu H S, Chiang C S, Shen S M. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon[J]. Journal of Marine Systems, 2009, 76(4):369-382. doi: 10.1016/j.jmarsys.2007.07.010

    CrossRef Google Scholar

    [13] Li S, Li W, Alves T M, et al. Large-scale scours formed by supercritical turbidity currents along the full length of a submarine canyon, Northeast South China Sea[J]. Marine Geology, 2020, 424:106158. doi: 10.1016/j.margeo.2020.106158

    CrossRef Google Scholar

    [14] Talling P J, Baker M L, Pope E L, et al. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea[J]. Nature Communications, 2022, 13(1):4193. doi: 10.1038/s41467-022-31689-3

    CrossRef Google Scholar

    [15] Forel F A. Les ravins sous-lacustres des fleuves glaciaires[J]. Comptes Rendus de l’Académie des Sciences Paris, 1885, 101:725-728.

    Google Scholar

    [16] Kuenen P H. Experiments in connection with Daly's hypothesis on the formation of submarine canyons[J]. Leidse Geologische Mededelingen, 1937, 8(2):327-351.

    Google Scholar

    [17] Felix M, Sturton S, Peakall J. Combined measurements of velocity and concentration in experimental turbidity currents[J]. Sedimentary Geology, 2005, 179(1-2):31-47. doi: 10.1016/j.sedgeo.2005.04.008

    CrossRef Google Scholar

    [18] Nogueira H I S, Adduce C, Alves E, et al. Analysis of lock-exchange gravity currents over smooth and rough beds[J]. Journal of Hydraulic Research, 2013, 51(4):417-431. doi: 10.1080/00221686.2013.798363

    CrossRef Google Scholar

    [19] Ho V L, Dorrell R M, Keevil G M, et al. Pulse propagation in turbidity currents[J]. Sedimentology, 2018, 65(2):620-637. doi: 10.1111/sed.12397

    CrossRef Google Scholar

    [20] Bowen A J, Normark W R, Piper D J W. Modelling of turbidity currents on Navy submarine fan, California continental borderland[M]//Stow D A V. Deep‐Water Turbidite Systems. International Association of Sedimentologists, 1991: 7-23.

    Google Scholar

    [21] Stacey M W, Bowen A J. The vertical structure of turbidity currents and a necessary condition for self‐maintenance[J]. Journal of Geophysical Research:Oceans, 1988, 93(C4):3543-3553. doi: 10.1029/JC093iC04p03543

    CrossRef Google Scholar

    [22] Abd El-Gawad S M, Pirmez C, Cantelli A, et al. 3-D numerical simulation of turbidity currents in submarine canyons off the Niger Delta[J]. Marine Geology, 2012, 326-328:55-66. doi: 10.1016/j.margeo.2012.06.003

    CrossRef Google Scholar

    [23] Salles T, Mulder T, Gaudin M, et al. Simulating the 1999 Capbreton canyon turbidity current with a Cellular Automata model[J]. Geomorphology, 2008, 97(3-4):516-537. doi: 10.1016/j.geomorph.2007.09.005

    CrossRef Google Scholar

    [24] Basani R, Janocko M, Cartigny M J B, et al. MassFLOW‐3DTM as a simulation tool for turbidity currents: some preliminary results[M]//Martinius A W, Ravnås R, Howell J A, et al. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. Chichester: Wiley Blackwell, 2014: 587-608.

    Google Scholar

    [25] Sun Y N, Li J, Cao Z X, et al. Effect of tributary inflow on reservoir turbidity current[J]. Environmental Fluid Mechanics, 2023, 23(2):259-290. doi: 10.1007/s10652-022-09856-3

    CrossRef Google Scholar

    [26] Heimsund S. Numerical simulation of turbidity currents: a new perspective for small-and large-scale sedimentological experiments[D]. Master Dissertation of the University of Bergen, 2007.

    Google Scholar

    [27] Heimsund S, Xu J P, Nemec W. Numerical simulation of recent turbidity currents in the Monterey Canyon system, offshore California[C]//AGU Fall Meeting Abstracts. 2007.

    Google Scholar

    [28] 栾坤祥. 南海北部海底峡谷识别方法构建与峡谷特征分析[D]. 国家海洋局第一海洋研究所硕士学位论文, 2017

    Google Scholar

    LUAN Kunxiang. The construction identification method of submarine canyon and characteristics analysis of northern South China sea[D]. Master Dissertation of the First Institute of Oceanography, SOA, 2017.]

    Google Scholar

    [29] 张春生, 刘忠保, 施冬, 等. 涌流型浊流形成及发展的实验模拟[J]. 沉积学报, 2002, 20(1):25-29

    Google Scholar

    ZHANG Chunsheng, LIU Zhongbao, SHI Dong, et al. The simulation experiment of surge-type turbidity current formation and development[J]. Acta Sedimentologica Sinica, 2002, 20(1):25-29.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(264) PDF downloads(24) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint