Citation: | DONG Jie, ZHU Xiaoqing, DOU Yanguang, SONG Weiyu, XUE Biying, ZOU Liang. Discovery and geological implications of Neoproterozoic metagranite in Jiaozhou Bay[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 163-174. doi: 10.16562/j.cnki.0256-1492.2023031002 |
Jiaozhou Bay is a semi-enclosed bay in Qingdao City in Shandong Peninsula, East China. Understanding the main geological frame of the basement rocks in the bay is crucial for large engineering projects and future urban planning in Qingdao. In this study, Neoproterozoic metamorphic granites (ca. 772 Ma) was discovered for the first time from drilling cores in Jiaozhou Bay .The basement rock is contemporaneous with Neoproterozoic granites that widely distributed in the Sulu orogenic belt. The lower part of the Neoproterozoic metamorphic granites in drilling cores was intruded by Early Cretaceous granites in age of ca. 120 Ma, which is consistent with the ages of adjacent Laoshan granites. The trace element distribution patterns of zircons in the Early Cretaceous granites and Neoproterozoic metamorphic granites in the drilling cores of Jiaozhou Bay are similar but showing a narrower range. The Early Cretaceous granite magma in the Jiaozhou Bay area might be derived from the remelting of Neoproterozoic granitic rocks. The crystallization temperatures of the Neoproterozoic metamorphic granites and Early Cretaceous granites determined by using zircon-Ti thermometer are both higher than 750°C, indicating that the source magma were water-undersaturated. This results suggest that the dynamic mechanisms of the two magmatic events may not be related to the oceanic subduction-related "Big mantle wedge" model.
[1] | 张金川. 南黄海海域构造单元的重新命名及其特征对比[J]. 海洋地质动态, 1995(6):3-5 ZHANG Jinchuan. The renaming of the tectonic units in the south yellow sea and their characteristics comparison[J]. Marine Geology Letters, 1995(6):3-5.] |
[2] | 栾光忠, 刘红军, 范德江. 青岛胶州湾地质特征及其成因[J]. 海洋湖沼通报, 1998(3):18-23 LUAN Guangzhong, LIU Hongjun, FAN Dejiang. The geological feature and origin of the Jiaozhou Bay in Qingdao[J]. Transactions of Oceanology and Limnology, 1998(3):18-23.] |
[3] | 栾光忠, 张海平. 青岛沧口-温泉断裂的空间展布及现代活动性研究[J]. 地震地质, 2001, 23(1):63-68 doi: 10.3969/j.issn.0253-4967.2001.01.008 LUAN Guangzhong, ZHANG Haiping. Plane geometry and mordern activity of the Qingdao Cangkou-Wenquan fault[J]. Seismology and Geology, 2001, 23(1):63-68.] doi: 10.3969/j.issn.0253-4967.2001.01.008 |
[4] | 郭玉贵, 邓志辉, 尤惠川, 等. 青岛沧口断裂的地质构造特征与第四纪活动性研究[J]. 震灾防御技术, 2007, 2(2):102-115 doi: 10.11899/zzfy20070202 GUO Yugui, DENG Zhihui, YOU Huichuan, et al. Geological features and Quaternary activities of Cangkou fault in Qingdao, China[J]. Technology for Earthquake Disaster Prevention, 2007, 2(2):102-115.] doi: 10.11899/zzfy20070202 |
[5] | 支鹏遥, 刘保华, 李西双, 等. 胶州湾湾口区的地质特征[J]. 海洋地质动态, 2008, 24(2):11-14,27 doi: 10.3969/j.issn.1009-2722.2008.02.003 ZHI Pengyao, LIU Baohua, LI Xishuang, et al. Geological characteristics of Baymouth area of Jiaozhou bay[J]. Marine Geology Letters, 2008, 24(2):11-14,27.] doi: 10.3969/j.issn.1009-2722.2008.02.003 |
[6] | 李官保, 刘保华, 韩国忠, 等. 胶州湾基岩类型与分布特征研究[J]. 海洋科学进展, 2009, 27(1):34-41 doi: 10.3969/j.issn.1671-6647.2009.01.005 LI Guanbao, LIU Baohua, HAN Guozhong et al. Types and distributions of bed rocks in the Jiaozhou Bay[J]. Advances in Marine Science, 2009, 27(1):34-41.] doi: 10.3969/j.issn.1671-6647.2009.01.005 |
[7] | 栾光忠, 王红霞, 尹明泉, 等. 青岛城市主要断裂构造特征以及对城市地质环境的影响[J]. 地球学报, 2010, 31(1):102-108 LUAN Guangzhong, WANG Hongxia, YIN Mingquan, et al. Characteristics of main faulted structures in Qingdao City and their influence on urban geological environment[J]. Acta Geoscientica Sinica, 2010, 31(1):102-108.] |
[8] | 韩宗珠, 宋红瑛, 张贺, 等. 青岛胶州湾口海底隧道火成岩岩石地球化学及成因[J]. 海洋湖沼通报, 2012(2):11-21 doi: 10.3969/j.issn.1003-6482.2012.02.002 HAN Zongzhu, SONG Hongying, ZHANG He, et al. Study of Geochemistry and cause of formation of igneous rocks of cross-harbour tunnel in the mouth of Jiaozhou Bay of Qingdao[J]. Transactions of Oceanology and Limnology, 2012(2):11-21.] doi: 10.3969/j.issn.1003-6482.2012.02.002 |
[9] | 窦衍光, 印萍, 陈斌, 等. 滨海基岩城市地质调查成果应用探索与理论技术创新: 以青岛市为例[J]. 海洋地质前沿, 2019, 37(9):1-9 DOU Yanguang, YIN Ping, CHEN Bin, et al. Application exploration, theoretical and technological innovation of geological survey results in coastal bedrock city: Taking Qingdao as an example[J]. Marine Geology Frontiers, 2019, 37(9):1-9.] |
[10] | 山东省地质调查院. 1: 25万青岛市幅区域地质调查报告与地质图[R]. 2004: 1-420 Shandong Institute of Geological Survey. 1: 250000 Qingdao regional geological survey report and geological map[R]. 2004: 1-420.] |
[11] | 李桂群. 青岛区域构造特征及其与地震的关系[J]. 海洋湖沼通报, 1994(3):26-32 LI Guiqun. The regional structure characteristics and their relation to earthquakes in Qingdao area[J]. Transactions of Oceanology and Limnology, 1994(3):26-32.] |
[12] | 侯方辉, 田振兴, 张训华, 等. 南黄海盆地两条地震剖面的重磁数据联合反演效果[J]. 石油地球物理勘探, 2012, 47(5):808-814 HOU Fanghui, TIAN Zhenxing, ZHANG Xunhua, et al. Joint inversion of gravity, magnetic and seismic data of the South Yellow Sea Basin[J]. Oil Geophysical Prospecting, 2012, 47(5):808-814.] |
[13] | 张玄杰, 张婉, 范子梁, 等. 南黄海北部航空重力场特征及主要地质认识[J]. 中国地质调查, 2017, 4(1):50-56 ZHANG Xuanjie, ZHANG Wan, FAN Ziliang, et al. Characteristics of airborne gravity field and the main geological discovery in the northern South Yellow Sea[J]. Geological Survey of China, 2017, 4(1):50-56.] |
[14] | 孙中宇, 刘展, 杨博, 等. 海阳凹陷东、西边界以及胶莱盆地东部边界讨论[J]. 地球物理学进展, 2018, 33(5):2166-2171 doi: 10.6038/pg2018BB0372 SUN Zhongyu, LIU Zhan, YANG Bo, et al. Discussion on the eastern and western boundary of Haiyang depression and eastern boundary of Jiaolai Basin[J]. Progress in Geophysics, 2018, 33(5):2166-2171.] doi: 10.6038/pg2018BB0372 |
[15] | 祁江豪, 吴志强, 张训华, 等. 胶莱盆地在南黄海的延伸: 来自OBS深地震探测的新证据[J]. 吉林大学学报(地球科学版), 2019, 49(1):106-114 QI Jianghao, WU Zhiqiang, ZHANG Xunhua, et al. Extension of Jiaolai basin into Qianliyan uplift in south yellow sea: new evidence from OBS deep seismic detection[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(1):106-114.] |
[16] | Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x |
[17] | Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4 |
[18] | 高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2):417-432 GAO Xiaoying, ZHENG Yongfei. On the Zr-in-rutile and Ti-in-zircon geothermometers[J]. Acta Petrologica Sinica, 2011, 27(2):417-432.] |
[19] | 雷玮琰, 施光海, 刘迎新. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 2013, 20(4):273-284 LEI Weiyan, SHI Guanghai, LIU Yingxin. Research progress on trace element characteristics of zircons of different origins[J]. Earth Science Frontiers, 2013, 20(4):273-284.] |
[20] | McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3-4):223-253. doi: 10.1016/0009-2541(94)00140-4 |
[21] | Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151(4):413-433. doi: 10.1007/s00410-006-0068-5 |
[22] | Fu B, Page F Z, Cavosie A J, et al. Ti-in-zircon thermometry: applications and limitations[J]. Contributions to Mineralogy and Petrology, 2008, 156(2):197-215. doi: 10.1007/s00410-008-0281-5 |
[23] | Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4):429-437. doi: 10.1007/s00410-007-0201-0 |
[24] | Harrison T M, Watson E B, Aikman A B. Temperature spectra of zircon crystallization in plutonic rocks[J]. Geology, 2007, 35(7):635-638. doi: 10.1130/G23505A.1 |
[25] | Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters, 2007, 258(3-4):561-568. doi: 10.1016/j.jpgl.2007.04.020 |
[26] | Schiller D, Finger F. Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions[J]. Contributions to Mineralogy and Petrology, 2019, 174(6):51. doi: 10.1007/s00410-019-1585-3 |
[27] | Ghent E D, Stout M Z. TiO2 activity in metamorphosed pelitic and basic rocks: principles and applications to metamorphism in southeastern Canadian Cordillera[J]. Contributions to Mineralogy and Petrology, 1984, 86(3):248-255. doi: 10.1007/BF00373670 |
[28] | 赵广涛, 王德滋, 曹钦臣. 崂山花岗岩岩石地球化学与成因[J]. 高校地质学报, 1997, 3(1):1-15 ZHAO Guangtao, WANG Dezi, CAO Qinchen. The Geochemistry and genesis of the Laoshan granitoids, Shandong Province[J]. Geological Journal of China Universities, 1997, 3(1):1-15.] |
[29] | 赵广涛, 王德滋, 曹钦臣, 等. I-A型复合花岗岩体的热演化及其意义: 以崂山花岗岩体为例[J]. 中国科学(D辑), 1998, 28(4): 296-302 ZHAO Guangtao, WANG Dezi, CAO Qinchen, et al. Thermal evolution and its significance of I-A type granitoid complex The Laoshan Granitoid as an example[J]. Science in China Series D: Earth Sciences, 1998, 41(5): 529-536.] |
[30] | 刘利双, 刘福来, 冀磊, 等. 北苏鲁超高压变质带内多成因类型的变花岗质岩石及其地质意义[J]. 岩石学报, 2018, 34(6):1557-1580 LIU Lishuang, LIU Fulai, JI Lei, et al. The polygenetic meta-granitic rocks and their geological significance, within the North Sulu ultrahigh-pressure belt[J]. Acta Petrologica Sinia, 2018, 34(6):1557-1580.] |
[31] | 王斌, 宋明春, 周建波, 等. 山东省四期A型花岗岩类及其对大地构造演化的启示[J]. 华北地质, 2022, 45(2):1-17 WANG Bin, SONG Mingchun, ZHOU Jianbo, et al. Four stages A-type granitoids in Shandong Province and their implications for tectonic evolution[J]. North China Geology, 2022, 45(2):1-17.] |
[32] | Zheng Y F, Wu Y B, Chen F K, et al. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic[J]. Geochimica et Cosmochimica Acta, 2004, 68(20):4145-4165. doi: 10.1016/j.gca.2004.01.007 |
[33] | Zhu D C, Lü D W, Shen X L, et al. Discovery and geological significance of neoproterozoic metamorphic granite in Jimo, Shandong province, eastern China[J]. Acta Geologica Sinica, 2016, 90(6):2080-2096. doi: 10.1111/1755-6724.13023 |
[34] | Gao Y J, Niu Y L, Duan M, et al. The petrogenesis and tectonic significance of the Early Cretaceous intraplate granites in eastern China: The Laoshan granite as an example[J]. Lithos, 2019, 328-329:200-211. doi: 10.1016/j.lithos.2019.01.031 |
[35] | 侯建华, 任天龙, 杨仕鹏, 等. 山东即墨马连山地区新元古代花岗质片麻岩捕掳体的发现及其地质意义[J]. 地质调查与研究, 2016, 39(2):81-88 HOU Jianhua, REN Tianlong, YANG Shipeng, et al. The discovery of Neo proterozoic granitic gneiss xenolith in Malianshan of Jimo, Shandong province, and its geological significance[J]. Geological Survey and Research, 2016, 39(2):81-88.] |
[36] | Wei C S, Zhao Z F, Spicuzza M J. Zircon oxygen isotopic constraint on the sources of late Mesozoic A-type granites in eastern China[J]. Chemical Geology, 2008, 250(1-4):1-15. doi: 10.1016/j.chemgeo.2008.01.004 |
[37] | Goss S C, Wilde S A, Wu F Y, et al. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton[J]. Lithos, 2010, 120(3-4):309-326. doi: 10.1016/j.lithos.2010.08.019 |
[38] | 王来明, 任天龙, 刘汉栋, 等. 胶东地区中生代花岗岩划分[J]. 山东国土资源, 2021, 37(8):1-14 doi: 10.12128/j.issn.1672-6979.2021.08.001 WANG Laiming, REN Tianlong, LIU Handong, et al. Division of Mesozoic granites in Jiaodong area[J]. Shandong Land and Resources, 2021, 37(8):1-14.] doi: 10.12128/j.issn.1672-6979.2021.08.001 |
[39] | 刘瑞杨, 周瑶琪, 周腾飞, 等. 青岛大珠山高分异花岗岩地球化学特征与含矿性分析[J]. 地质论评, 2023, 69(1):179-198 LIU Ruiyang, ZHOU Yaoqi, ZHOU Tengfei, et al. Geochemical characteristics and mineralization analysis of Dazhushan highly differentiated granite[J]. Geological Review, 2023, 69(1):179-198.] |
[40] | Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7):643-646. doi: 10.1130/G23603A.1 |
[41] | Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027 |
[42] | Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7 |
[43] | 郑永飞, 陈福坤, 龚冰, 等. 大别-苏鲁造山带超高压变质岩原岩性质: 锆石氧同位素和U-Pb年龄证据[J]. 科学通报, 2003, 48(2):110-119 doi: 10.3321/j.issn:0023-074X.2003.02.002 ZHENG Yongfei, CHEN Fukun, GONG Bing, et al. Protolith properties of ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Evidence from zircon oxygen isotope and U-Pb age[J]. Chinese Science Bulletin, 2003, 48(2):110-119.] doi: 10.3321/j.issn:0023-074X.2003.02.002 |
[44] | Li S, Miller C F, Tao W, et al. Role of sediment in generating contemporaneous, diverse “type” granitoid magmas[J]. Geology, 2021, 50(4):427-431. |
[45] | 张旗. 中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J]. 岩石矿物学杂志, 2013, 32(1):113-128 doi: 10.3969/j.issn.1000-6524.2013.01.010 ZHANG Qi. Is the Mesozoic magmatism in eastern China related to the westward subduction of the Pacific plate?[J]. Acta Petrologica et Mineralogica, 2013, 32(1):113-128.] doi: 10.3969/j.issn.1000-6524.2013.01.010 |
[46] | 郑永飞, 吴福元. 克拉通岩石圈的生长和再造[J]. 科学通报, 2009, 54(14): 1945-1949 ZHENG Yongfei, WU Fuyuan. Growth and reworking of cratonic lithosphere[J]. Chinese Science Bulletin, 2009, 54(19): 3347-3353.] |
[47] | 朱晓青, 侯方辉, 刘洪滨, 等. 山东即墨马山粗面英安岩年代学与地球化学特征及其地质意义[J]. 海洋地质与第四纪地质, 2021, 41(6):138-150 ZHU Xiaoqing, HOU Fanghui, LIU Hongbin, et al. Geochronology and geochemistry of Mashan trachydacite, JiMo District, Shandong Province and their geological implications[J]. Marine Geology & Quaternary Geology, 2021, 41(6):138-150.] |
[48] | 张旗, 王焰, 熊小林, 等. 埃达克岩和花岗岩: 挑战与机遇[M]. 北京: 中国大地出版社, 2008: 1-344 ZHANG Qi, WANG Yan, XIONG Xiaolin, et al. Adakite and Granite: Challenges and Opportunities[M]. Beijing: China Land Press, 2008: 1-344.] |
[49] | 何登洋, 邱昆峰, 于皓丞, 等. 华北克拉通胶莱盆地马山地区早白垩世粗面英安岩岩石成因[J]. 岩石学报, 2020, 36(12):3705-3720 doi: 10.18654/1000-0569/2020.12.09 HE Dengyang, QIU Kunfeng, YU Haocheng, et al. Petrogenesis of the Early Cretaceous trachy-dacite from Mashan in the Jiaolai Basin, North China Craton[J]. Acta Petrologica Sinica, 2020, 36(12):3705-3720.] doi: 10.18654/1000-0569/2020.12.09 |
[50] | Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology, 2001, 172(1-2):5-24. doi: 10.1016/S0009-2541(00)00233-3 |
[51] | Lee J K W, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon[J]. Nature, 1997, 390(6656):159-162. doi: 10.1038/36554 |
[52] | 章邦桐, 凌洪飞, 吴俊奇, 等. “花岗岩浆晶出锆石U-Pb体系的封闭温度≥850℃”质疑: 基于元素扩散理论、锆石U-Pb年龄与全岩Rb-Sr年龄对比的证据[J]. 地质论评, 2013, 59(1):63-70 doi: 10.3969/j.issn.0371-5736.2013.01.007 ZHANG Bangtong, LING Hongfei, WU Junqi, et al. Doubts about “the closure temperature of U-Pb isotopic systerm in the zircon crystallized from granitic Magma≥850℃”: evidences of element diffusion theory and comparision between the zircon U-Pb ages and the whole-rock Rb-Sr ages of granite plutons[J]. Geological Review, 2013, 59(1):63-70.] doi: 10.3969/j.issn.0371-5736.2013.01.007 |
Sketched geological map of the basement rocks in Jiaozhou Bay and adjacent areas
Sampling locations of borehole profile and photomicrographs of samples
Concordia diagrams, weighted mean ages, and typical cathodoluminescene (CL) images of zircons from JZW1 core and QDQZ1 core in Jiaozhou Bay
Th/U ratios of zircons from ther Early Cretaceous granite and Neoproterozoic metagranite in Jiaozhou Bay
Rare earth element distribution pattern of zircons from Early Cretaceous granite and Neoproterozoic metagranite in Jiaozhou Bay
Ti-in-zircon thermometer results for the Early Cretaceous granite and Neoproterozoic metagranite in Jiaozhou Bay
Discriminant diagrams with continental and ocean crust zircon fields for zircons from Early Cretaceous granite and Neoproterozoic metagranite in Jiaozhou Bay
The fields of zircon compositions used as discriminants for different rocks types