2023 Vol. 43, No. 2
Article Contents

GAO Shu, JIA Jianjun, YU Qian. Theoretical framework for coastal accretion-erosion analysis: material budgeting, profile morphology, shoreline change[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 1-17. doi: 10.16562/j.cnki.0256-1492.2023021501
Citation: GAO Shu, JIA Jianjun, YU Qian. Theoretical framework for coastal accretion-erosion analysis: material budgeting, profile morphology, shoreline change[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 1-17. doi: 10.16562/j.cnki.0256-1492.2023021501

Theoretical framework for coastal accretion-erosion analysis: material budgeting, profile morphology, shoreline change

  • Shoreline dynamics is often used as a criterion for coastal erosion or accretion. However, this criterion may not be valid because it does not incorporate the factors of material budget and coastal profile morphology. Based upon an analysis of the properties of sediment budget equation and the profile morphology of beach and tidal flat systems, it is argued that only by combining the material budget with the rate of shoreline retreat or the profile morphology can the status of accretion-erosion be accurately identified. The sediment budget equation contains the information on the magnitude of a sedimentary system, accretion-erosion intensity, and the growth limit of the system. The beach profile shape depends on particle size and wave energy. The minimum wave energy dissipation principle implies the existence of equilibrium morphology, while the tidal flat profile shape depends on sediment supply, particle size composition and tidal dynamics. On such a basis, the erosion of both sandy coasts (represented by beaches) and muddy coasts (represented by tidal flats) can be understood in terms its mechanisms, rate and temporal scales by taking into account the various factors such as extreme events induced by storms and sea level rise. The rate of shoreline change may vary by orders of magnitude, ranging from low values of <100 m/a to high values of 101~102 m /a, with time scales for accretion-erosion processes ranging from 10−2 a (storm events) to 103 a (sea level changes). According to the different combinations of sediment budget and shoreline advancing/retreating patterns, the dynamic behaviour of the coastal zone associated with beaches and tidal flats has four possible situations: one of them is related to accretion, and the others are linked with erosion. The different types of erosion are each determined by the geomorphic evolution direction and the temporal scale. High intensity, long-time persisting erosion is mainly related to material supply cutoff and sea level rise, and is influenced by anthropogenic factors.

  • 加载中
  • [1] 夏东兴, 王文海, 武桂秋, 等. 中国海岸侵蚀述要[J]. 地理学报, 1993, 48(5):468-476 doi: 10.3321/j.issn:0375-5444.1993.05.010

    CrossRef Google Scholar

    XIA Dongxing, WANG Wenhai, WU Guiqiu, et al. Coastal erosion in China [J]. Acta Geographica Sinica, 1993, 48(5): 468-476. doi: 10.3321/j.issn:0375-5444.1993.05.010

    CrossRef Google Scholar

    [2] 陈吉余. 中国海岸侵蚀概要[M]. 北京: 海洋出版社, 2010

    Google Scholar

    CHEN Jiyu. A Synthesis of Coastal Erosion in China[M]. Beijing: China Ocean Press, 2010.

    Google Scholar

    [3] Bacopoulos P, Clark R R. Coastal erosion and structural damage due to four consecutive-year major hurricanes: beach projects afford resilience and coastal protection [J]. Ocean & Coastal Management, 2021, 209: 105643.

    Google Scholar

    [4] Brooke B, Lee R, Cox M, et al. Rates of shoreline progradation during the last 1700 years at beachmere, southeastern Queensland, Australia, based on optically stimulated luminescence dating of beach ridges [J]. Journal of Coastal Research, 2008, 24(3): 640-648.

    Google Scholar

    [5] Brooke B P, Olley J M, Pietsch T, et al. Chronology of quaternary coastal aeolianite deposition and the drowned shorelines of southwestern western Australia: a reappraisal [J]. Quaternary Science Reviews, 2014, 93: 106-124. doi: 10.1016/j.quascirev.2014.04.007

    CrossRef Google Scholar

    [6] Gao S. Modeling the growth limit of the Changjiang delta [J]. Geomorphology, 2007, 85(3-4): 225-236. doi: 10.1016/j.geomorph.2006.03.021

    CrossRef Google Scholar

    [7] King C A M. Beaches and Coasts[M]. 2nd ed. London: Edward Arnold, 1972.

    Google Scholar

    [8] Komar P D. Beach Processes and Sedimentation[M]. 2nd ed. Upper Saddle River: Prentice Hall, 1998.

    Google Scholar

    [9] Flemming B W, Davis R A Jr. Holocene evolution, morphodynamics and sedimentology of the Spiekeroog Barrier Island system (southern North Sea) [J]. Senckenbergiana Maritima, 1994, 24(1-6): 117-155.

    Google Scholar

    [10] 张忍顺, 陈才俊. 江苏岸外沙洲演变与条子泥并陆前景研究[M]. 北京: 海洋出版社, 1992

    Google Scholar

    ZHANG Renshun, Chen Caijun. Evolution of Jiangsu Offshore banksia (Radial Offshore Tidal Sands) and Probability of Tiaozini Sands to Merged into Mainland[M]. Beijing: China Ocean Press, 1992.

    Google Scholar

    [11] Duc D M, Nhuan M T, Ngoi C V. An analysis of coastal erosion in the tropical rapid accretion delta of the Red River, Vietnam [J]. Journal of Asian Earth Sciences, 2012, 43(1): 98-109. doi: 10.1016/j.jseaes.2011.08.014

    CrossRef Google Scholar

    [12] Trenhaile A S. The Geomorphology of Rock Coasts[M]. Oxford: Clarendon Press, 1987.

    Google Scholar

    [13] Sunamura T. Geomorphology of Rocky Coasts[M]. Chichester: John Wiley, 1992.

    Google Scholar

    [14] Davis R A Jr, Fitzgerald D M. Beaches and Coasts[M]. Malden: Blackwell, 2004.

    Google Scholar

    [15] Carter R W G. Coastal Environments: An Introduction to the Physical, Ecological and Cultural Systems of Coastlines[M]. San Diego: Academic Press, 1988.

    Google Scholar

    [16] Woodroffe C D. Coasts: Form, Process and Evolution[M]. Cambridge: Cambridge University Press, 2002.

    Google Scholar

    [17] Thom B G, Hall W. Behaviour of beach profiles during accretion and erosion dominated periods [J]. Earth Surface Processes and Landforms, 1991, 16(2): 113-127. doi: 10.1002/esp.3290160203

    CrossRef Google Scholar

    [18] Xue Z, Liu J P, DeMaster D, et al. Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam [J]. Marine Geology, 2010, 269(1-2): 46-60. doi: 10.1016/j.margeo.2009.12.005

    CrossRef Google Scholar

    [19] Gao S, Wang Y P, Gao J H. Sediment retention at the Changjiang sub-aqueous delta over a 57 year period, in response to catchment changes [J]. Estuarine, Coastal and Shelf Science, 2011, 95(1): 29-38. doi: 10.1016/j.ecss.2011.07.015

    CrossRef Google Scholar

    [20] Jia J J, Gao J H, Cai T L, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century [J]. Marine Geology, 2018, 401: 2-16. doi: 10.1016/j.margeo.2018.04.005

    CrossRef Google Scholar

    [21] Crossland C J, Kremer H H, Lindeboom H J, et al. Coastal Fluxes in the Anthropocene[M]. Berlin: Springer, 2005.

    Google Scholar

    [22] 高抒. 海岸带陆海相互作用及其环境影响[M]//中国海洋学会. 2007-2008海洋科学学科发展报告. 北京: 中国科学技术出版社, 2008: 79-87, 165-166

    Google Scholar

    GAO Shu. Land-ocean interactions in the coastal zone and their environmental influences[M]//Chinese Society for Oceanography. Report on Advances in Ocean Science. Beijing: China Science and Technology Press, 2008: 79-87, 165-166.

    Google Scholar

    [23] Haslett S K. Coastal Systems[M]. London: Routledge, 2000.

    Google Scholar

    [24] Kay R, Alder J. Coastal Planning and Management[M]. London: E & FN Spon, 1999.

    Google Scholar

    [25] 任美锷. 江苏省海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1986

    Google Scholar

    REN Mei’e. The Report of Integrated Survey for Coastal Zone and Tidal Plat in Jiangsu Province[M]. Beijing: China Ocean Press, 1986.

    Google Scholar

    [26] Boak E H, Turner I L. Shoreline definition and detection: a review [J]. Journal of Coastal Research, 2005, 21(4): 688-703.

    Google Scholar

    [27] Merritt W S, Letcher R A, Jakeman A J. A review of erosion and sediment transport models [J]. Environmental Modelling & Software, 2003, 18(8-9): 761-799.

    Google Scholar

    [28] Bird E C F. Coasts: An Introduction to Coastal Geomorphology[M]. 3rd ed. Oxford: B. Blackwell, 1984.

    Google Scholar

    [29] 高抒, 朱大奎. 江苏淤泥质海岸剖面的初步研究[J]. 南京大学学报: 自然科学版, 1988, 24(1):75-84

    Google Scholar

    GAO Shu, ZHU Dakui. The profile of Jiangsu’s mud coast [J]. Journal of Nanjing University:Natural Sciences Edition, 1988, 24(1): 75-84.

    Google Scholar

    [30] Toure S, Diop O, Kpalma K, et al. Shoreline detection using optical remote sensing: a review [J]. ISPRS International Journal of Geo-information, 2019, 8(2): 75. doi: 10.3390/ijgi8020075

    CrossRef Google Scholar

    [31] Sarretta A, Pillon S, Molinaroli E, et al. Sediment budget in the Lagoon of Venice, Italy [J]. Continental Shelf Research, 2010, 30(8): 934-949. doi: 10.1016/j.csr.2009.07.002

    CrossRef Google Scholar

    [32] Yang S L, Milliman J D, Li P, et al. 50, 000 dams later: erosion of the Yangtze River and its delta [J]. Global and Planetary Change, 2011, 75(1-2): 14-20. doi: 10.1016/j.gloplacha.2010.09.006

    CrossRef Google Scholar

    [33] Luo X X, Yang S L, Wang R S, et al. New evidence of Yangtze delta recession after closing of the Three Gorges Dam [J]. Scientific Reports, 2017, 7: 41735. doi: 10.1038/srep41735

    CrossRef Google Scholar

    [34] Mei X F, Dai Z J, Wei W, et al. Secular bathymetric variations of the north Channel in the Changjiang (Yangtze) Estuary, China, 1880-2013: causes and effects [J]. Geomorphology, 2018, 303: 30-40. doi: 10.1016/j.geomorph.2017.11.014

    CrossRef Google Scholar

    [35] Li J, Gao S. Estimating deposition rates using a morphological proxy of Spartina alterniflora plants [J]. Journal of Coastal Research, 2013, 29(6): 1452-1463.

    Google Scholar

    [36] Wang D D, Gao S, Zhao Y Y, et al. An eco-parametric method to derive sedimentation rates for coastal saltmarshes [J]. Science of the Total Environment, 2021, 770: 144756. doi: 10.1016/j.scitotenv.2020.144756

    CrossRef Google Scholar

    [37] 高抒, 方国洪, 于克俊, 等. 沉积物输运对砂质海底稳定性影响的评估方法及应用实例[J]. 海洋科学集刊, 2001, 43:25-37

    Google Scholar

    GAO Shu, FANG Guohang, YU Kejun, et al. Methodology for evaluating the stability of sandy seabed controlled by sediment movement, with an example of application [J]. Studia Marina Sinica, 2001, 43: 25-37.

    Google Scholar

    [38] Yu Q, Wang Y W, Gao S, et al. Modeling the formation of a sand bar within a large funnel-shaped, tide-dominated estuary: Qiantangjiang Estuary, China [J]. Marine Geology, 2012, 299-302: 63-76. doi: 10.1016/j.margeo.2011.12.008

    CrossRef Google Scholar

    [39] Xie D F, Pan C H, Wu X G, et al. The variations of sediment transport patterns in the outer Changjiang Estuary and Hangzhou Bay over the last 30 years [J]. Journal of Geophysical Research:Oceans, 2017, 122(4): 2999-3020. doi: 10.1002/2016JC012264

    CrossRef Google Scholar

    [40] Xie D F, Gao S, Pan C H. Process-based modeling of morphodynamics of a tidal inlet system [J]. Acta Oceanologica Sinica, 2010, 29(6): 51-61. doi: 10.1007/s13131-010-0076-1

    CrossRef Google Scholar

    [41] Yu Q, Wang Y W, Gao J H, et al. Turbidity maximum formation in a well-mixed macrotidal estuary: the role of tidal pumping [J]. Journal of Geophysical Research:Oceans, 2014, 119(11): 7705-7724. doi: 10.1002/2014JC010228

    CrossRef Google Scholar

    [42] Wang Y W, Wang Y P, Yu Q, et al. Sand-mud tidal flat morphodynamics influenced by alongshore tidal currents [J]. Journal of Geophysical Research:Oceans, 2019, 124(6): 3818-3836. doi: 10.1029/2018JC014550

    CrossRef Google Scholar

    [43] 吴超羽, 包芸, 任杰, 等. 珠江三角洲及河网形成演变的数值模拟和地貌动力学分析: 距今6000-2500a[J]. 海洋学报, 2006, 28(4):64-80

    Google Scholar

    WU Chaoyu, BAO Yun, REN Jie, et al. A numerical simulation and mophodynamic analysis on the evolution of the Zhujiang River delta in China: 6000~2500 a BP [J]. Acta Oceanologica Sinica, 2006, 28(4): 64-80.

    Google Scholar

    [44] Hapke C J, Lentz E E, Gayes P T, et al. A review of sediment budget imbalances along Fire Island, New York: can nearshore geologic framework and patterns of shoreline change explain the deficit? [J]. Journal of Coastal Research, 2010, 263(3): 510-522.

    Google Scholar

    [45] Gao S, Collins M. Net sand transport direction in a tidal inlet, using foraminiferal tests as natural tracers [J]. Estuarine, Coastal and Shelf Science, 1995, 40(6): 681-697. doi: 10.1006/ecss.1995.0046

    CrossRef Google Scholar

    [46] Strogatz S H. Exploring complex networks [J]. Nature, 2001, 410(6825): 268-276. doi: 10.1038/35065725

    CrossRef Google Scholar

    [47] 高抒, 贾建军, 于谦. 绿色海堤的沉积地貌与生态系统动力学原理: 研究综述[J]. 热带海洋学报, 2022, 41(4):1-19

    Google Scholar

    GAO Shu, JIA Jianjun, YU Qian. Green sea dykes: an overview of their principles of sediment, geomorphology and ecosystem dynamics [J]. Journal of Tropical Oceanography, 2022, 41(4): 1-19.

    Google Scholar

    [48] Young A P, Carilli J E. Global distribution of coastal cliffs [J]. Earth Surface Processes and Landforms, 2019, 44(6): 1309-1316. doi: 10.1002/esp.4574

    CrossRef Google Scholar

    [49] Limber P W, Murray A B. Sea stack formation and the role of abrasion on beach-mantled headlands [J]. Earth Surface Processes and Landforms, 2015, 40(4): 559-568. doi: 10.1002/esp.3667

    CrossRef Google Scholar

    [50] Cullen N D, Bourke M C. Clast abrasion of a rock shore platform on the Atlantic coast of Ireland [J]. Earth Surface Processes and Landforms, 2018, 43(12): 2627-2641. doi: 10.1002/esp.4421

    CrossRef Google Scholar

    [51] Watanabe M, Goto K, Imamura F, et al. Modeling boulder transport by coastal waves on cliff topography: case study at Hachijo Island, Japan [J]. Earth Surface Processes and Landforms, 2019, 44(15): 2939-2956. doi: 10.1002/esp.4684

    CrossRef Google Scholar

    [52] Buchanan D H, Naylor L A, Hurst M D, et al. Erosion of rocky shore platforms by block detachment from layered stratigraphy [J]. Earth Surface Processes and Landforms, 2020, 45(4): 1028-1037. doi: 10.1002/esp.4797

    CrossRef Google Scholar

    [53] Matsumoto H, Dickson M E, Kench P S. Modelling the relative dominance of wave erosion and weathering processes in shore platform development in micro- to mega-tidal settings [J]. Earth Surface Processes and Landforms, 2018, 43(12): 2642-2653. doi: 10.1002/esp.4422

    CrossRef Google Scholar

    [54] Gao S, Collins M. Equilibrium coastal profiles: I. Review and synthesis [J]. Chinese Journal of Oceanology and Limnology, 1998, 16(2): 97-107. doi: 10.1007/BF02845175

    CrossRef Google Scholar

    [55] Brooks S M, Spencer T. Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK [J]. Geomorphology, 2010, 124(1-2): 26-41. doi: 10.1016/j.geomorph.2010.08.005

    CrossRef Google Scholar

    [56] Carpenter N E, Dickson M E, Walkden M, et al. Lithological controls on soft cliff planshape evolution under high and low sediment availability [J]. Earth Surface Processes and Landforms, 2015, 40(6): 840-852. doi: 10.1002/esp.3675

    CrossRef Google Scholar

    [57] Hurst M D, Rood D H, Ellis M A, et al. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): 13336-13341. doi: 10.1073/pnas.1613044113

    CrossRef Google Scholar

    [58] Stavrou A, Lawrence J A, Mortimore R N, et al. A geotechnical and GIS based method for evaluating risk exposition along coastal cliff environments: a case study of the chalk cliffs of southern England [J]. Natural Hazards and Earth System Sciences, 2011, 11(11): 2997-3011. doi: 10.5194/nhess-11-2997-2011

    CrossRef Google Scholar

    [59] Dawson R J, Dickson M E, Nicholls R J, et al. Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change [J]. Climatic Change, 2009, 95: 249-288. doi: 10.1007/s10584-008-9532-8

    CrossRef Google Scholar

    [60] Trenhaile A S. Predicting the response of hard and soft rock coasts to changes in sea level and wave height [J]. Climatic Change, 2011, 109(3): 599-615.

    Google Scholar

    [61] Faraoni V. On the extremization of wave energy dissipation rates in equilibrium beach profiles [J]. Journal of Oceanography, 2020, 76(6): 459-463. doi: 10.1007/s10872-020-00556-4

    CrossRef Google Scholar

    [62] Maldonado S. Do beach profiles under nonbreaking waves minimize energy dissipation? [J]. Journal of Geophysical Research:Oceans, 2020, 125(5): e2019JC015876.

    Google Scholar

    [63] Dean R G. Equilibrium beach profiles: characteristics and applications [J]. Journal of Coastal Research, 1991, 7(1): 53-84.

    Google Scholar

    [64] Bernabeu A M, Medina R, Vidal C. An equilibrium profile model for tidal environments [J]. Scientia Marina, 2002, 66(4): 325-335. doi: 10.3989/scimar.2002.66n4325

    CrossRef Google Scholar

    [65] Bernabeu A M, Medina R, Vidal C. A morphological model of the beach profile integrating wave and tidal influences [J]. Marine Geology, 2003, 197(1-4): 95-116. doi: 10.1016/S0025-3227(03)00087-2

    CrossRef Google Scholar

    [66] Castelle B, Marieu V, Bujan S, et al. Equilibrium shoreline modelling of a high-energy meso-macrotidal multiple-barred beach [J]. Marine Geology, 2014, 347: 85-94. doi: 10.1016/j.margeo.2013.11.003

    CrossRef Google Scholar

    [67] Gao S. Geomorphology and sedimentology of tidal flats[M]//Perillo G M E, Wolanski E, Cahoon D, et al. Coastal Wetlands: An Integrated Ecosystem Approach. 2nd ed. Amsterdam: Elsevier, 2019: 359-381.

    Google Scholar

    [68] Flemming B W. Siliciclastic back-barrier tidal flats[M]//Davis R A Jr, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 231-267.

    Google Scholar

    [69] Van Straaten L M J U, Kuenen P H. Accumulation of fine grained sediments in the Dutch Wadden Sea [J]. Geologie en Mijnbouw, 1957, 19: 329-354.

    Google Scholar

    [70] Van Straaten L M J U, Kuenen H. Tidal action as a cause of clay accumulation [J]. Journal of Sedimentary Research, 1958, 28(4): 406-413.

    Google Scholar

    [71] 朱大奎, 高抒. 潮滩地貌与沉积的数学模型[J]. 海洋通报, 1985, 4(5):15-21

    Google Scholar

    ZHU Dakui, GAO Shu. Mathematical model of the geomorphic evolution and sedimentation of tidal flats [J]. Marine Science Bulletin, 1985, 4(5): 15-21.

    Google Scholar

    [72] Amos C L. Siliciclastic tidal flats[M]// Perillo G M E. Geomorphology and Sedimentology of Estuarine, Amsterdam: Elsevier, 1995: 273-306.

    Google Scholar

    [73] Gao S. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, Eastern China [J]. Continental Shelf Research, 2009, 29(16): 1927-1936. doi: 10.1016/j.csr.2008.12.010

    CrossRef Google Scholar

    [74] Wang Y P, Gao S, Jia J J, et al. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China [J]. Marine Geology, 2012, 291-294: 147-161. doi: 10.1016/j.margeo.2011.01.004

    CrossRef Google Scholar

    [75] Pritchard D, Hogg A J. Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents [J]. Journal of Geophysical Research:Oceans, 2003, 108(C10): 3313. doi: 10.1029/2002JC001570

    CrossRef Google Scholar

    [76] Liu X J, Gao S, Wang Y P. Modeling profile shape evolution for accreting tidal flats composed of mud and sand: a case study of the central Jiangsu coast, China [J]. Continental Shelf Research, 2011, 31(16): 1750-1760. doi: 10.1016/j.csr.2011.08.002

    CrossRef Google Scholar

    [77] Yang S L, Luo X X, Temmerman S, et al. Role of delta-front erosion in sustaining salt marshes under sea-level rise and fluvial sediment decline [J]. Limnology and Oceanography, 2020, 65(9): 1990-2009. doi: 10.1002/lno.11432

    CrossRef Google Scholar

    [78] Kamphuis J W. Introduction to Coastal Engineering and Management[M]. Singapore: World Scientific, 2000.

    Google Scholar

    [79] Wang Y, Ke X K. Cheniers on the east coastal plain of China [J]. Marine Geology, 1989, 90(4): 321-335. doi: 10.1016/0025-3227(89)90134-5

    CrossRef Google Scholar

    [80] Lee H J, Chun S S, Chang J H, et al. Landward migration of isolated shelly sand ridge (Chenier) on the macrotidal flat of Gomso Bay, west coast of Korea: controls of storms and typhoon [J]. Journal of Sedimentary Research, 1994, 64(4a): 886-893.

    Google Scholar

    [81] Wang H, Van Strydonck M. Chronology of Holocene Cheniers and oyster reefs on the coast of Bohai Bay, China [J]. Quaternary Research, 1997, 47(2): 192-205. doi: 10.1006/qres.1996.1865

    CrossRef Google Scholar

    [82] Dashtgard S E, Vaucher R, Yang B C, et al. Hutchison medallist 1. Wave-dominated to tide-dominated coastal systems: a unifying model for tidal shorefaces and refinement of the coastal-environments classification scheme [J]. Geoscience Canada, 2021, 48(1): 5-22. doi: 10.12789/geocanj.2021.48.171

    CrossRef Google Scholar

    [83] Short A D. Macro-meso tidal beach morphodynamics: an overview [J]. Journal of Coastal Research, 1991, 7(2): 417-436.

    Google Scholar

    [84] Masselink G, Hegge B. Morphodynamics of meso- and macrotidal beaches: examples from central Queensland, Australia [J]. Marine Geology, 1995, 129(1-2): 1-23. doi: 10.1016/0025-3227(95)00104-2

    CrossRef Google Scholar

    [85] Fan D D. Open-coast tidal flats[M]//Davis R A Jr, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 187-229.

    Google Scholar

    [86] 高抒. 极浅水边界层的沉积环境效应[J]. 沉积学报, 2010, 28(5):926-932 doi: 10.14027/j.cnki.cjxb.2010.05.005

    CrossRef Google Scholar

    GAO Shu. Extremely shallow water benthic boundary layer processes and the resultant sedimentological and morphological characteristics [J]. Acta Sedimentologica Sinica, 2010, 28(5): 926-932. doi: 10.14027/j.cnki.cjxb.2010.05.005

    CrossRef Google Scholar

    [87] Shi B W, Cooper J R, Pratolongo P D, et al. Erosion and accretion on a mudflat: the importance of very shallow-water effects [J]. Journal of Geophysical Research:Oceans, 2017, 122(12): 9476-9499. doi: 10.1002/2016JC012316

    CrossRef Google Scholar

    [88] Silvester R, Hsu J C. Coastal Stabilization: Innovative Concepts[M]. Upper Saddle River: Prentice Hall, 1993.

    Google Scholar

    [89] Bruun P. Sea-level rise as a cause of shore erosion [J]. Journal of the Waterways and Harbors Division, 1962, 88(1): 117-130. doi: 10.1061/JWHEAU.0000252

    CrossRef Google Scholar

    [90] 高抒. 大型海底、海岸和沙漠沙丘的形态和迁移特征[J]. 地学前缘, 2009, 16(6):13-22 doi: 10.3321/j.issn:1005-2321.2009.06.002

    CrossRef Google Scholar

    GAO Shu. Morphological and migration characteristics of large-scaled submarine, coastal and desert sand dunes [J]. Earth Science Frontiers, 2009, 16(6): 13-22. doi: 10.3321/j.issn:1005-2321.2009.06.002

    CrossRef Google Scholar

    [91] Qi Y L, Yu Q, Gao S, et al. Morphological evolution of river mouth spits: wave effects and self-organization patterns [J]. Estuarine, Coastal and Shelf Science, 2021, 262: 107567. doi: 10.1016/j.ecss.2021.107567

    CrossRef Google Scholar

    [92] Flor-Blanco G, Alcántara-Carrió J, Jackson D W T, et al. Coastal erosion in NW Spain: Recent patterns under extreme storm wave events [J]. Geomorphology, 2021, 387: 107767. doi: 10.1016/j.geomorph.2021.107767

    CrossRef Google Scholar

    [93] Leont'yev I O. Estimating the vulnerability of a sandy coast to storm-induced erosion [J]. Oceanology, 2021, 61(2): 254-261. doi: 10.1134/S0001437021020119

    CrossRef Google Scholar

    [94] Donnelly C, Kraus N, Larson M. State of knowledge on measurement and modeling of coastal overwash [J]. Journal of Coastal Research, 2006, 22(4): 965-991.

    Google Scholar

    [95] Toimil A, Camus P, Losada I J, et al. Climate change-driven coastal erosion modelling in temperate sandy beaches: methods and uncertainty treatment [J]. Earth-Science Reviews, 2020, 202: 103110. doi: 10.1016/j.earscirev.2020.103110

    CrossRef Google Scholar

    [96] Davis R A Jr. Geology of Holocene Barrier Island Systems[M]. Berlin: Springer-Verlag, 1994.

    Google Scholar

    [97] Gao S, Collins M. Formation of salt-marsh cliffs in an accretional environment, Christchurch Harbour, southern England[C]//Proceedings of the 30th International Geological Congress (Volume 13: Marine Geology and Palaeoceanography). Beijing: VSP Press, 1997: 95-110.

    Google Scholar

    [98] Zhao Y Y, Yu Q, Wang D D, et al. Rapid formation of marsh-edge cliffs, Jiangsu coast, China [J]. Marine Geology, 2017, 385: 260-273. doi: 10.1016/j.margeo.2017.02.001

    CrossRef Google Scholar

    [99] 赵秧秧, 高抒, 王丹丹, 等. 盐沼前缘陡坎韵律性形态特征及其形成过程与机理[J]. 地理学报, 2014, 69(3):378-390 doi: 10.11821/dlxb201403009

    CrossRef Google Scholar

    ZHAO Yangyang, GAO Shu, WANG Dandan, et al. Characteristics and formation mechanisms of the rhythmicmorphology of salt-marsh edge cliffs [J]. Acta Geographica Sinica, 2014, 69(3): 378-390. doi: 10.11821/dlxb201403009

    CrossRef Google Scholar

    [100] Ren M E, Zhang R S, Yang J H. Effect of typhoon No. 8114 on coastal morphology and sedimentation of Jiangsu Province, People's Republic of China [J]. Journal of Coastal Research, 1985, 1(1): 21-28.

    Google Scholar

    [101] Wang J, Bai C, Xu Y H, et al. Tidal couplet formation and preservation, and criteria for discriminating storm-surge sedimentation on the tidal flats of central Jiangsu Province, China [J]. Journal of Coastal Research, 2010, 26(5): 976-981.

    Google Scholar

    [102] Reed D J. The response of coastal marshes to sea-level rise: survival or submergence? [J]. Earth Surface Processes and Landforms, 1995, 20(1): 39-48. doi: 10.1002/esp.3290200105

    CrossRef Google Scholar

    [103] Allen J R L. The Severn Estuary in southwest Britain: its retreat under marine transgression, and fine-sediment regime [J]. Sedimentary Geology, 1990, 66(1-2): 13-28. doi: 10.1016/0037-0738(90)90003-C

    CrossRef Google Scholar

    [104] Weill P, Tessier B, Mouazé D, et al. Shelly Cheniers on a modern macrotidal flat (Mont-Saint-Michel Bay, France): internal architecture revealed by ground-penetrating radar [J]. Sedimentary Geology, 2012, 279: 173-186. doi: 10.1016/j.sedgeo.2010.12.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1486) PDF downloads(41) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint