2023 Vol. 43, No. 6
Article Contents

LI Yonghang, WEN Mingming, CHEN Zongheng, YAO Huiqiang, WAN Peng, LI Bin, LIN Hai, CHEN Zhijian. Advance, challenge, and suggestion in geophysical technology for underwater archaeology survey[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 191-201. doi: 10.16562/j.cnki.0256-1492.2023021401
Citation: LI Yonghang, WEN Mingming, CHEN Zongheng, YAO Huiqiang, WAN Peng, LI Bin, LIN Hai, CHEN Zhijian. Advance, challenge, and suggestion in geophysical technology for underwater archaeology survey[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 191-201. doi: 10.16562/j.cnki.0256-1492.2023021401

Advance, challenge, and suggestion in geophysical technology for underwater archaeology survey

More Information
  • Underwater archaeology involves different stages of investigation, and the survey scope, underwater environment, and survey objective vary greatly. Therefore, corresponding survey techniques and strategies are also different. We analyzed conventional method and cutting-edge geophysical vehicle techniques of underwater archaeology, including acoustics (multi-beam echosounder, side-scan sonar, sub-bottom profiler, and single-channel/mini multi-channel seismic), electromagnetic, electric, LiDAR, and underwater operated vehicles (HOV/ROV/AUV) etc. At present, many challenges remain in underwater archaeology in terms of image recognition of seabed relics, detection of buried small-scale artificial relics, detection and excavation of cave leftovers, detection of intertidal remnants, and the exploration of deep-sea archaeology and excavation. It is our device to strengthen cooperation in marine industry, upgrade and improve existing survey technology, and establish a mechanism for hardware sharing to increase the probability of archaeological site discovery, avoid damage and loss of the sites, and reduce economic costs.

  • 加载中
  • [1] 丁见祥. 浅谈大陆架考古及其意义[J]. 中国文化遗产, 2022, 111(5):79-89 doi: 10.3969/j.issn.1672-7819.2022.05.018

    CrossRef Google Scholar

    DING Jianxiang. Archaeology of continental shelf and its implications: a brief discussion [J]. China Cultural Heritage, 2022, 111(5): 79-89. doi: 10.3969/j.issn.1672-7819.2022.05.018

    CrossRef Google Scholar

    [2] Chappell J, Shackleton N J. Oxygen isotopes and sea level [J]. Nature, 1986, 324(6093): 137-140. doi: 10.1038/324137a0

    CrossRef Google Scholar

    [3] Galili E, Benjamin J, Hershkovitz I, et al. Atlit-Yam: a unique 9000 year old prehistoric village submerged off the Carmel coast, Israel-the SPLASHCOS field school (2011)[M]//Bailey G N, Harff J, Sakellariou D. Under the Sea: Archaeology and Palaeolandscapes of the Continental Shelf. Cham: Springer, 2017: 85-102.

    Google Scholar

    [4] Flemming N C, Çağatay M N, Chiocci F L, et al. Land Beneath the Waves: Submerged Landscapes and Sea Level Change: A Joint Geoscience-Humanities Strategy for European Continental Shelf Prehistoric Research[M]. Oostende: European Marine Board, 2014: 171.

    Google Scholar

    [5] L'Hour M, 邱丹丹. 开创深海考古新模式: 月亮号沉船发掘[J]. 水下考古, 2018: 83-99

    Google Scholar

    L'Hour M, 邱丹丹. 开创深海考古新模式: 月亮号沉船发掘[J]. 水下考古, 2018: 83-99. [L'Hour M, QIU Dandan. La Lune: invent the abyssal archaeology[J]. Underwater Archaeology Survey, 2018: 83-99.

    Google Scholar

    [6] 胡毅, 丁见祥, 房旭东, 等. 水下考古区域调查与海洋地球物理方法[J]. 科学, 2016, 68(6): 32-35

    Google Scholar

    HU Yi, DING Jianxiang, FANG Xudong, et al. 2016. Underwater archaeological area survey and Marine geophysics[J]. Science, 68(6): 32-35.

    Google Scholar

    [7] 赵潮, 潘臻. 考古区域系统调查的理论、实践与反思[J]. 四川文物, 2015(4):91-96

    Google Scholar

    ZHAO Chao, PAN Zhen. Theory, practice and reflection on archaeological regional systematic investigation [J]. Sichuan Cultural Relics, 2015(4): 91-96.

    Google Scholar

    [8] 马永, 李家彪, 吴自银, 等. 综合物探技术在海洋考古中的应用: 以川岛水下考古为例[J]. 海洋学研究, 2016, 34(2):43-52 doi: 10.3969/j.issn.1001-909X.2016.02.006

    CrossRef Google Scholar

    MA Yong, LI Jiabiao, WU Ziyin, et al. The application of an integrated geophysical prospecting system to underwater archeology: an example from Chuan Island, Guangdong province [J]. Journal of Marine Sciences, 2016, 34(2): 43-52. doi: 10.3969/j.issn.1001-909X.2016.02.006

    CrossRef Google Scholar

    [9] 蔺爱军. 综合海洋地球物理方法在探测水下文化遗产中的应用研究: 以平潭附近海域为例[D]. 厦门: 国家海洋局第三海洋研究所, 2017

    Google Scholar

    LIN Aijun. The study of integrated marine geophysical method in detecting underwater cultural heritage: a case of nearby the waters in Pingtan[D]. Xiamen: Third Institute of Oceanography, State Oceanic Administration of China, 2017.

    Google Scholar

    [10] 李海东, 胡毅, 许江, 等. 浅地层剖面系统在福建沿海海底沉船调查中的应用[J]. 海洋技术学报, 2019, 38(1):79-84

    Google Scholar

    LI Haidong, HU Yi, XU Jiang, et al. Application of sub-bottom profilers in the investigation of seabed shipwreck in Fujian coastal waters [J]. Journal of Ocean Technology, 2019, 38(1): 79-84.

    Google Scholar

    [11] Ferentinos G, Fakiris E, Christodoulou D, et al. Optimal sidescan sonar and subbottom profiler surveying of ancient wrecks: the ‘Fiskardo’ wreck, Kefallinia Island, Ionian Sea [J]. Journal of Archaeological Science, 2020, 113: 105032. doi: 10.1016/j.jas.2019.105032

    CrossRef Google Scholar

    [12] 胡毅, 丁见祥, 房旭东, 等. 基于水下文物控制实验的海洋地球物理声学研究进展[J]. 地球科学进展, 2019, 34(10):1081-1091 doi: 10.11867/j.issn.1001-8166.2019.10.1081

    CrossRef Google Scholar

    HU Yi, DING Jianxiang, FANG Xudong, et al. Control experiments for underwater cultural relics survey by marine geophysical of acoustics [J]. Advances in Earth Science, 2019, 34(10): 1081-1091. doi: 10.11867/j.issn.1001-8166.2019.10.1081

    CrossRef Google Scholar

    [13] 蒲进菁, 李太春, 唐梓力, 等. 无人船在近浅海水下考古领域的工程实践[J]. 海洋测绘, 2022, 42(3):52-55 doi: 10.3969/j.issn.1671-3044.2022.03.012

    CrossRef Google Scholar

    PU Jinjing, LI Taichun, TANG Zili, et al. A practical application of unmanned surface vehicle in the field of underwater archeology in the shallow water [J]. Hydrographic Surveying and Charting, 2022, 42(3): 52-55. doi: 10.3969/j.issn.1671-3044.2022.03.012

    CrossRef Google Scholar

    [14] Bates C R, Lawrence M, Dean M, et al. Geophysical methods for wreck-Site monitoring: the rapid archaeological site surveying and evaluation (RASSE) programme [J]. International Journal of Nautical Archaeology, 2011, 40(2): 404-416. doi: 10.1111/j.1095-9270.2010.00298.x

    CrossRef Google Scholar

    [15] Mallios A. Sonar scan matching for simultaneous localization and mapping in confined underwater environments[D]. Doctor Dissertation of University of Gerona, 2014.

    Google Scholar

    [16] Hurtado O J Z, Missiaen T, De Clercq M, et al. Comparative seismic source study for buried palaeolandscape investigations in the southern North Sea[C]//20th European Meeting of Environmental and Engineering Geophysics. Vienna: European Association of Geoscientists, 2014,doi: 10.3997/2214-4609.20142110.

    Google Scholar

    [17] Wunderlich J, Wendt G, Müller S. High-resolution echo-sounding and detection of embedded archaeological objects with nonlinear sub-bottom profilers [J]. Marine Geophysical Researches, 2005, 26(2-4): 123-133. doi: 10.1007/s11001-005-3712-y

    CrossRef Google Scholar

    [18] Plets R, Dix J, Bastos A, et al. Characterization of buried inundated peat on seismic (chirp) data, inferred from core information [J]. Archaeological Prospection, 2007, 14(4): 261-272. doi: 10.1002/arp.318

    CrossRef Google Scholar

    [19] Missiaen T. The potential of seismic imaging in marine archaeological site investigations [J]. Relicta, 2010, 6: 219-236.

    Google Scholar

    [20] Missiaen T, Murphy S, Loncke L, et al. Very high-resolution seismic mapping of shallow gas in the Belgian coastal zone [J]. Continental Shelf Research, 2002, 22(16): 2291-2301. doi: 10.1016/S0278-4343(02)00056-0

    CrossRef Google Scholar

    [21] Missiaen T. VHR marine 3D seismics for shallow water investigations: some practical guidelines [J]. Marine Geophysical Research, 2005, 26(2-4): 145-155. doi: 10.1007/s11001-005-3708-7

    CrossRef Google Scholar

    [22] Plets R M K, Dix J K, Adams J R, et al. The use of a high-resolution 3D chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), river Hamble, UK [J]. Journal of Archaeological Science, 2009, 36(2): 408-418. doi: 10.1016/j.jas.2008.09.026

    CrossRef Google Scholar

    [23] Wunderlich J, Lowag J. Multi-transducer parametric sub-bottom profiler to acquire high-resolution data of buried structures for 3-D visualisation[C]//11th European Conference on Underwater Acoustics. 2012: 1308-1313.

    Google Scholar

    [24] Boyce J I, Reinhardt E G, Raban A, et al. Marine magnetic survey of a submerged roman Harbour, Caesarea Maritima, Israel [J]. International Journal of Nautical Archaeology, 2004, 33(1): 122-136. doi: 10.1111/j.1095-9270.2004.00010.x

    CrossRef Google Scholar

    [25] Klein G, Bohlen T, Theilen F, et al. Acquisition and inversion of dispersive seismic waves in shallow marine environments [J]. Marine Geophysical Research, 2005, 26(2-4): 287-315. doi: 10.1007/s11001-005-3725-6

    CrossRef Google Scholar

    [26] 罗贤虎, 邓明, 邱宁, 等. MicrOBEM: 小型海底电磁接收机[J]. 物探与化探, 2022, 46(3):544-549

    Google Scholar

    LUO Xianhu, DENG Ming, QIU Ning, et al. MicrOBEM: a micro-ocean-bottom electromagnetic receiver [J]. Geophysical and Geochemical Exploration, 2022, 46(3): 544-549.

    Google Scholar

    [27] 王猛, 张汉泉, 伍忠良, 等. 勘查天然气水合物资源的海洋可控源电磁发射系统[J]. 地球物理学报, 2013, 56(11):3708-3717 doi: 10.6038/cjg20131112

    CrossRef Google Scholar

    WANG Meng, ZHANG Hanquan, WU Zhongliang, et al. Marine controlled source electromagnetic launch system for natural gas hydrate resource exploration [J]. Chinese Journal of Geophysics, 2013, 56(11): 3708-3717. doi: 10.6038/cjg20131112

    CrossRef Google Scholar

    [28] Henderson R D, Day-Lewis F D, Abarca E, et al. Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA [J]. Hydrogeology Journal, 2010, 18(1): 173-185. doi: 10.1007/s10040-009-0498-z

    CrossRef Google Scholar

    [29] Rucker D F, Noonan G E, Greenwood W J. Electrical resistivity in support of geological mapping along the Panama Canal [J]. Engineering Geology, 2011, 117(1-2): 121-133. doi: 10.1016/j.enggeo.2010.10.012

    CrossRef Google Scholar

    [30] Passaro S. Marine electrical resistivity tomography for shipwreck detection in very shallow water: a case study from Agropoli (Salerno, southern Italy) [J]. Journal of Archaeological Science, 2010, 37(8): 1989-1998. doi: 10.1016/j.jas.2010.03.004

    CrossRef Google Scholar

    [31] Pe’eri S, Morgan L V, Philpot W D, et al. Land-water interface resolved from airborne LiDAR bathymetry (ALB) waveforms [J]. Journal of Coastal Research, 2011, 62: 75-85. doi: 10.2112/SI_62_8

    CrossRef Google Scholar

    [32] 金鼎坚, 吴芳, 于坤, 等. 机载激光雷达测深系统大规模应用测试与评估: 以中国海岸带为例[J]. 红外与激光工程, 2020, 49(S2):20200317

    Google Scholar

    JIN Dingjian, WU Fang, YU Kun, et al. Large-scale application test and evaluation of an airborne Lidar bathymetry system: a case study in China′s coastal zone [J]. Infrared and Laser Engineering, 2020, 49(S2): 20200317.

    Google Scholar

    [33] Pastol Y. Use of airborne LiDAR bathymetry for coastal hydrographic surveying: the French experience [J]. Journal of Coastal Research, 2011(62): 6-18.

    Google Scholar

    [34] 宿殿鹏, 阳凡林, 陈亮, 等. 无人机载LiDAR测深系统进行海岸带测绘的可行性分析[J]. 山东科技大学学报:自然科学版, 2022, 41(5):11-20

    Google Scholar

    SU Dianpeng, YANG Fanlin, CHEN Liang, et al. Feasibility analysis of UAV-airborne LiDAR bathymetry system for coastal zone mapping [J]. Journal of Shandong University of Science and Technology:Natural Science, 2022, 41(5): 11-20.

    Google Scholar

    [35] 连琏, 魏照宇, 陶军, 等. 无人遥控潜水器发展现状与展望[J]. 海洋工程装备与技术, 2018, 5(4):223-231 doi: 10.12087/oeet.2095-7297.2018.04.01

    CrossRef Google Scholar

    LIAN Lian, WEI Zhaoyu, TAO Jun, et al. Development status and prospects of remotely operated vehicles [J]. Ocean Engineering Equipment and Technology, 2018, 5(4): 223-231. doi: 10.12087/oeet.2095-7297.2018.04.01

    CrossRef Google Scholar

    [36] Bingham B, Foley B, Singh H, et al. Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle [J]. Journal of Field Robotics, 2010, 27(6): 702-717. doi: 10.1002/rob.20350

    CrossRef Google Scholar

    [37] Mahon I, Pizarro O, Johnson-Roberson M, et al. Reconstructing pavlopetri: mapping the world’s oldest submerged town using stereo-vision[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 2315-2321.

    Google Scholar

    [38] Mccann A M, Oleson J P. Deep-Water Shipwrecks off Skerki Bank: the 1997 Survey[M]. Journal of Roman Archaeology, 2004: 40-89.

    Google Scholar

    [39] 丁见祥. 二〇一八年南海海域深海考古调查与思考[N]. 中国文物报, 2018-08-10(5)

    Google Scholar

    DING Jianxiang. Deep-sea archaeological survey and reflection in South China Sea in 2018[N]. China Cultural Relics Journal, 2018-08-10(5).

    Google Scholar

    [40] Missiaen T, Sakellariou D, Flemming N C. Survey strategies and techniques in underwater geoarchaeological research: an overview with emphasis on prehistoric sites[M]//Bailey G N, Harff J, Sakellariou D. Under the Sea: Archaeology and Palaeolandscapes of the Continental Shelf. Cham: Springer, 2017: 21-37.

    Google Scholar

    [41] Du X, Sun Y F, Song Y P, et al. A comparative study of different CNN models and transfer learning effect for underwater object classification in side-scan sonar images [J]. Remote Sensing, 2023, 15(3): 593. doi: 10.3390/rs15030593

    CrossRef Google Scholar

    [42] Huo G Y, Wu Z Y, Li J B. Underwater object classification in Sidescan sonar images using deep transfer learning and semisynthetic training data [J]. IEEE Access, 2020, 8: 47407-47418. doi: 10.1109/ACCESS.2020.2978880

    CrossRef Google Scholar

    [43] Ren Q Y, Grøn O, Hermand J P. On the in-situ detection of flint for underwater Stone Age archaeology[C]//Proceedings of OCEANS 2011 IEEE Conference. Santander: IEEE, 2011: 1-7,doi: 10.1109/Oceans-Spain.2011.6003529.

    Google Scholar

    [44] 刘溢滂, 胡毅. 浅埋水下文物遗址的海洋地球物理声学探测展望: 以沉船为例[J]. 地球科学进展, 2023, 38(1):99-109 doi: 10.11867/j.issn.1001-8166.2022.078

    CrossRef Google Scholar

    LIU Yipang, HU Yi. Prospect of marine geophysical acoustic detection of buried underwater cultural relics: a case study of shipwrecks [J]. Advances in Earth Science, 2023, 38(1): 99-109. doi: 10.11867/j.issn.1001-8166.2022.078

    CrossRef Google Scholar

    [45] Gillham J. Development of a field deployable underwater laser scanning system[D]. Master Dissertation of University of Waterloo, 2011.

    Google Scholar

    [46] Missiaen T, Slob E, Donselaar M E. Comparing different shallow geophysical methods in a tidal estuary, Verdronken land van Saeftinge, western Scheldt, the Netherlands [J]. Netherlands Journal of Geosciences, 2008, 87(2): 151-164. doi: 10.1017/S0016774600023192

    CrossRef Google Scholar

    [47] Delefortrie S, Saey T, Van De Vijver E, et al. Frequency domain electromagnetic induction survey in the intertidal zone: limitations of low-induction-number and depth of exploration [J]. Journal of Applied Geophysics, 2014, 100: 14-22. doi: 10.1016/j.jappgeo.2013.10.005

    CrossRef Google Scholar

    [48] Kruiver P, Zurita-Hurtado O, Diafera G, et al. Non-conventional techniques for marine archaeological investigations[R]. Renard Centre of Marine Geology, University of Gent, 2013.

    Google Scholar

    [49] Fitch S, Thomson K, Gaffney V. Late Pleistocene and Holocene depositional systems and the palaeogeography of the Dogger Bank, North Sea [J]. Quaternary Research, 2005, 64(2): 185-196. doi: 10.1016/j.yqres.2005.03.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(2137) PDF downloads(374) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint