Citation: | LI Zhangpeng, LIANG Jie, LI Sen, CHEN Jianwen, LIAO Jing, GONG Jianming, ZHANG Yinguo, WANG Jianqiang, YANG Yanqiu, YANG Chuansheng, LEI Baohua. Geometric characteristics and evolution of channel-levee system in Upper India Fan since the Miocene[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 30-43. doi: 10.16562/j.cnki.0256-1492.2022122201 |
Taking the Miocene Upper Indian fan channel-levee system as the research object, we used high-precision two-dimensional seismic data to carry out seismic fine interpretation and geometric analysis, depicted the geometric characteristics of the channel-levee system and the spatio-temporal evolution process, and discussed the main stages and characteristics of the development and evolution of the Miocene Upper Indian fan. Results show that the Miocene Upper India fan channel-levee system can be divided into three developmental phases: the Miocene, the Pliocene, and the Pleistocene to present. The channel-levee system evolved from “single-phase channel–lateral migration–flat type” to “multi-phase channel–vertical stacking–thick-narrow type”.An in-depth discussion of the geometric characteristics and evolution of channel-levee system in Upper India Fan since the Miocene can provide new examples for the study of the sedimentary architecture of gravity flow channels, and provide reference for deep-sea oil and gas exploration and development.
[1] | 朱筱敏, 谈明轩, 董艳蕾, 等. 当今沉积学研究热点讨论: 第20届国际沉积学大会评述[J]. 沉积学报, 2019, 37(1):1-16 ZHU Xiaomin, TAN Mingxuan, DONG Yanlei, et al. Current hot topics of sedimentology: comment on the 20th international sedimentological congress [J]. Acta Sedimentologica Sinica, 2019, 37(1): 1-16. |
[2] | 侯云超, 樊太亮, 王宏语, 等. 墨西哥湾西北部古近纪早期(62~48 Ma)源汇体系与沉积格局变迁[J]. 沉积学报, 2020, 38(6):1272-1283 HOU Yunchao, FAN Tailiang, WANG Hongyu, et al. Changes of source-to-sink systems and sedimentary patterns in the Early Paleogene (62-48 Ma) of the northwestern gulf of Mexico [J]. Acta Sedimentologica Sinica, 2020, 38(6): 1272-1283. |
[3] | 刘亚雷, 马嫡, 柳永杰, 等. 刚果扇X区块中新统重力流水道储层分布特征[J]. 中国海上油气, 2016, 28(4):16-23 LIU Yalei, MA Di, LIU Yongjie, et al. Reservoir distribution characteristics of Miocene gravity flow channel in Block X of Congo fan [J]. China Offshore Oil and Gas, 2016, 28(4): 16-23. |
[4] | 谈明轩, 吴峰, 马皓然, 等. 海底扇沉积相模式、沉积过程及其沉积记录的指示意义[J]. 沉积学报, 2022, 40(2):435-449 TAN Mingxuan, WU Feng, MA Haoran, et al. Facies model, sedimentary process and depositional record of submarine fans, and their implications [J]. Acta Sedimentologica Sinica, 2022, 40(2): 435-449. |
[5] | 张旭, 卜范青, 段瑞凯, 等. 尼日尔三角洲盆地深水区E油田重力流水道复合体沉积特征与内部期次解剖[J]. 海相油气地质, 2021, 26(2):170-178 doi: 10.3969/j.issn.1672-9854.2021.02.009 ZHANG Xu, BU Fanqing, DUAN Ruikai, et al. Sedimentary characteristics and internal phase anatomy of gravity flow channel complex of E Oilfield in deep water area of Niger Delta Basin [J]. Marine Origin Petroleum Geology, 2021, 26(2): 170-178. doi: 10.3969/j.issn.1672-9854.2021.02.009 |
[6] | Gaedicke C, Schlüter H U, Roeser H A, et al. Origin of the northern Indus Fan and Murray Ridge, Northern Arabian Sea: interpretation from seismic and magnetic imaging [J]. Tectonophysics, 2002, 355(1-4): 127-143. doi: 10.1016/S0040-1951(02)00137-3 |
[7] | 刘化清, 冯明, 郭精义, 等. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征: 以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3):1-12 LIU Huaqing, FENG Ming, GUO Jingyi, et al. Seismic reflection and sedimentary characteristics of deep-water gravity flow channels on the slope of lacustrine depression basin: first member of Nenjiang Formation in LHP area, Songliao Basin [J]. Lithologic Reservoirs, 2021, 33(3): 1-12. |
[8] | 王改云, 刘金萍, 简晓玲, 等. 印度河扇近海盆地沉积演化特征[J]. 中国海上油气, 2021, 33(4):31-38 WANG Gaiyun, LIU Jinping, JIAN Xiaoling, et al. Sedimentary evolution characteristics of offshore Indus river fan basin [J]. China Offshore Oil and Gas, 2021, 33(4): 31-38. |
[9] | Deptuck M E, Steffens G S, Barton M, et al. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea [J]. Marine and Petroleum Geology, 2003, 20(6-8): 649-676. doi: 10.1016/j.marpetgeo.2003.01.004 |
[10] | 浩克, 纪友亮, 张胜久, 等. 印度河扇水道堤岸外侧更新世沉积物波发育特征与形成过程分析[J]. 古地理学报, 2022, 24(2):389-404 Haq E U, JI Youliang, ZHANG Shengjiu, et al. Analysis on characteristics and formation process of sediment waves on the Pleistocene channel levee backslope of Indus fan [J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(2): 389-404. |
[11] | Mchargue T R. 印度海底扇的海底峡谷和扇根水道的内部几何形态、地震相与石油潜力[J]. 樊太亮, 译. 国外油气勘探, 1988(3):14-22 Mchargue T R. Internal geometry, seismic facies and petroleum potential of submarine canyons and fan root channels in the Indian submarine fan [J]. FAN Tailiang, trans. Equipment for Geophysical Prospecting, 1988(3): 14-22. |
[12] | 李森, 梁杰, 龚建明, 等. 巴基斯坦东部海域中-新生代沉积研究进展[J]. 海洋地质前沿, 2022, 38(2):1-13 LI Sen, LIANG Jie, GONG Jianming, et al. Research progress of the Meso-Cenozoic sedimentary evolution in eastern Pakistan sea [J]. Marine Geology Frontiers, 2022, 38(2): 1-13. |
[13] | Khan M, Liu Y K. Geodynamic evolution of the offshore Indus Basin Pakistan: the western Indian Plate Passive Continental Margin [J]. Geophysical Journal International, 2019, 217(2): 1366-1386. doi: 10.1093/gji/ggz091 |
[14] | Carmichael S M, Akhter S, Bennett J K, et al. Geology and hydrocarbon potential of the offshore Indus Basin, Pakistan [J]. Petroleum Geoscience, 2009, 15(2): 107-116. doi: 10.1144/1354-079309-826 |
[15] | Clift P, Gaedicke C. Accelerated mass flux to the Arabian Sea during the Middle to Late Miocene [J]. Geology, 2002, 30(3): 207-210. doi: 10.1130/0091-7613(2002)030<0207:AMFTTA>2.0.CO;2 |
[16] | Shahzad K, Betzler C, Qayyum F. Controls on the Paleogene carbonate platform growth under greenhouse climate conditions (Offshore Indus Basin) [J]. Marine and Petroleum Geology, 2019, 101: 519-539. doi: 10.1016/j.marpetgeo.2018.12.025 |
[17] | 陈红瑾, 徐兆凯, 蔡明江, 等. 30ka以来东阿拉伯海U1456站位粘土粒级碎屑沉积物来源及其古环境意义[J]. 地球科学, 2019, 44(8):2803-2817 CHEN Hongjin, XU Zhaokai, CAI Mingjiang, et al. Provenance of clay-sized detrital sediments and its paleoenvironmental implications at site U1456 in the Eastern Arabian Sea since 30ka [J]. Earth Science, 2019, 44(8): 2803-2817. |
[18] | Carter S C, Griffith E M, Clift P D, et al. Clay-fraction strontium and neodymium isotopes in the Indus Fan: implications for sediment transport and provenance [J]. Geological Magazine, 2020, 157(6): 879-894. doi: 10.1017/S0016756820000394 |
[19] | 苏超. 南图尔盖盆地260D区块上侏罗统河道砂体识别[J]. 石油地质与工程, 2019, 33(6):5-8,14 doi: 10.3969/j.issn.1673-8217.2019.06.002 SU Chao. Identification of Upper Jurassic channel sand bodies in Block 260D of South Turgai Basin [J]. Petroleum Geology and Engineering, 2019, 33(6): 5-8,14. doi: 10.3969/j.issn.1673-8217.2019.06.002 |
[20] | 吕彩丽, 吴时国, 袁圣强. 深水水道沉积体系及地震识别特征研究[J]. 海洋科学集刊, 2010(50):40-49 LÜ Caili, WU Shiguo, YUAN Shengqiang. Deepwater channel complex sedimentary system and its seismic reflection in Qiongdongnan Basin [J]. Studia Marina Sinica, 2010(50): 40-49. |
[21] | 陈昱瑶, 周江羽, 钟佳, 等. 南海西北缘深水水道体系的地震响应及其演化[J]. 海洋地质与第四纪地质, 2014, 34(2):69-78 CHEN Yuyao, ZHOU Jiangyu, ZHONG Jia, et al. Seismic characteristics of deepwater channel system in northwestern margin of South China Sea and its evolution [J]. Marine Geology & Quaternary Geology, 2014, 34(2): 69-78. |
[22] | 李华, 何幼斌, 王振奇. 深水高弯度水道−堤岸沉积体系形态及特征[J]. 古地理学报, 2011, 13(2):139-149 LI Hua, HE Youbin, WANG Zhenqi. Morphology and characteristics of deep water high sinuous channel-levee system [J]. Journal of Palaeogeography, 2011, 13(2): 139-149. |
[23] | 赵晓明, 刘飞, 葛家旺, 等. 深水水道沉积构型单元分级与结构样式[J]. 沉积学报, 2023, 41(1):37-51 doi: 10.14027/j.issn.1000-0550.2022.048 ZHAO Xiaoming, LIU Fei, GE Jiawang, et al. Sedimentary architecture unit classification and structural style of deep-water channels [J]. Acta Sedimentologica Sinica, 2023, 41(1): 37-51. doi: 10.14027/j.issn.1000-0550.2022.048 |
[24] | Vitor A, Morgan S, Carlos P, et al. Lateral accretion packages (LAPs): an important reservoir element in deep water sinuous channels [J]. Marine and Petroleum Geology, 2003, 20(6-8): 631-648. doi: 10.1016/j.marpetgeo.2003.08.003 |
[25] | 王允洪, 黄建军, 刘婷婷, 等. 坎波斯盆地X油田Marlim组深水扇弯曲水道形态表征及其时空演化[J]. 特种油气藏, 2020, 27(2):57-62 doi: 10.3969/j.issn.1006-6535.2020.02.009 WANG Yunhong, HUANG Jianjun, LIU Tingting, et al. Morphological characterization and spatiotemporal evolution of deep-water fan curved channel in the Marlim formation of X oilfield in Campos Basin [J]. Special Oil & Gas Reservoirs, 2020, 27(2): 57-62. doi: 10.3969/j.issn.1006-6535.2020.02.009 |
[26] | 李华, 何幼斌. 深水重力流水道沉积研究进展[J]. 古地理学报, 2020, 22(1):161-174 doi: 10.7605/gdlxb.2020.01.010 LI Hua, HE Youbin. Research progress on deepwater gravity flow channel deposit [J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(1): 161-174. doi: 10.7605/gdlxb.2020.01.010 |
[27] | 江凯禧, 姚长华, 郭清正, 等. 印度扇深水区古—始新统烃源岩特征及发育模式[J]. 沉积学报, 2016, 34(4):785-793 JIANG Kaixi, YAO Changhua, GUO Qingzheng, et al. Characteristics and depositional model of Paleocene and Eocene source rocks in deepwater area of Indus fan [J]. Acta Sedimentologica Sinica, 2016, 34(4): 785-793. |
[28] | Clift P, Gaedicke C, Edwards R, et al. The stratigraphic evolution of the Indus Fan and the history of sedimentation in the Arabian Sea [J]. Marine Geophysical Researches, 2002, 23(3): 223-245. doi: 10.1023/A:1023627123093 |
[29] | 廖晶, 龚建明, 陈建文, 等. 印度扇近海盆地重力滑动构造新发现[J]. 海洋地质前沿, 2020, 36(6):76-79 LIAO Jing, GONG Jianming, CHEN Jianwen, et al. New discovery of gravity gliding structure in the offshore Indus Basin [J]. Marine Geology Frontiers, 2020, 36(6): 76-79. |
[30] | 刘金萍, 王改云, 简晓玲, 等. 巴基斯坦印度扇近海盆地油气地质条件分析[J]. 地质学刊, 2022, 46(4):351-357 doi: 10.3969/j.issn.1674-3636.2022.04.002 LIU Jinping, WANG Gaiyun, JIAN Xiaoling, et al. Analysis of petroleum geological condition in offshore Indus Basin, Pakistan [J]. Journal of Geology, 2022, 46(4): 351-357. doi: 10.3969/j.issn.1674-3636.2022.04.002 |
[31] | 龚建明, 廖晶, Muhammad Khalid, 等. 巴基斯坦海域油气勘探方向探讨[J]. 海洋地质前沿, 2019, 35(11):1-6 GONG Jianming, LIAO Jing, Muhammad Khalid, et al. Preliminary study on the oll and gas exploration targets in Offshore Pakistan [J]. Marine Geology Frontiers, 2019, 35(11): 1-6. |
[32] | GONG Jianming, LIAO Jing, LIANG Jie, et al. Exploration prospects of oil and gas in the Northwestern part of the Offshore Indus Basin, Pakistan [J]. China Geology, 2020, 3(4): 633-642. |
Location of the survey lines in the study area
Bar chart of offshore and onshore strata of the Indian Fan Offshore Basin [14]
Identification and division of the channel-levee system in the study area (the western side of the middle end)
Identification and division of the channel-levee system in the study area (the eastern side of the middle end)
Seismic profile of the channel-unit structure
Pattern of overlaying development of the channel-levee system[24]
Seismic profile of typical channel-levee system since the Miocene
Geometric characteristics in different spatial positions of the channel-levee system
Geometric characteristics in different periods of the channel-levee system development
Statistical models of different positions and different periods
The development of the channel-levee system in the Miocene
Floating bar chart in width-depth ratio of different periods channel-levee system
Sedimentary evolution model of the Upper Indian fan integral channel-levee system since the Miocene