Citation: | ZHAO Hualin, SUN Yongfu, JIA Chao, WEI Ruchun, DENG Hao, WU Tao. The subsidence by mining car traveling on deep-sea soft bottom based on Burger's creep model[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 179-190. doi: 10.16562/j.cnki.0256-1492.2022120202 |
With the depletion of terrestrial mineral resources, the deep-sea mineral resources have become the focus of exploitation and utilization in all countries of the world. A deep-sea mining car is an important equipment for deep-sea mineral resources mining, and a soft marine sediment is a special substrate with very low bearing capacity and shear strength. In mining operations, the physical and mechanical properties of soft marine sediment directly affect the stability of mining vehicles. The Burger's contact model was selected as the constitutive model of deep-sea soft sediment, and a laboratory triaxial test was carried out on seafloor soft undisturbed soil in a certain area. By comparing the actual triaxial test with PFC3D particle flow numerical simulation experiment, parameters of the Burger's creep model of soft sediment were calibrated. Meanwhile, the corresponding parameters were modified according to the calibration results, the digital simulation model of the seabed mining vehicle was established under five working conditions with different soil beds, and the subsidence depth of the mining car under different driving speeds under each working condition was simulated. The results show that the subsidence depth changes nonlinearly with the driving speed, and the subsidence depth decreases with the increasing of the speed in a certain range and gradually tends to be stable. In addition, the soft sediment in the creep area features higher clay content (38.1%~48.4%), water content (88.13%~137.79%), and compressibility (compression coefficient: 1.86~3.73 MPa−1, compression modulus: 1.26~2.13 MPa), and lower density (1.3~1.5 g/cm3) and strength (penetration resistance: 0.19~1.32 N, cohesion: 3.7~6.9 kPa, internal friction angle: 2.4°~3.9°), indicating that the bearing capacity is low and the creep performance is strong. This study provided a reference on a macro level and a theoretical basis for safe operation of seabed mining vehicle on soft bottom with similar parameters.
[1] | 王贤觉, 陈毓蔚, 吴明清. 铁锰结核的稀土和微量元素地球化学及其成因[J]. 海洋与湖沼, 1984, 15(6):501-514 WANG Xianjue, CHEN Yuwei, WU Mingqing. Geochemistry of RE and trace elements in ferromanganese nodules and their genesis[J]. Oceanologia et Limnologia Sinica, 1984, 15(6):501-514.] |
[2] | 仲义, 陈忠, 莫爱彬, 等. 南海北部铁锰结核成因及元素的赋存状态[J]. 热带海洋学报, 2017, 36(2):48-59 ZHONG Yi, CHEN Zhong, MO Aibin, et al. Genetic types and elemental occurrence phases of ferromanganese nodules in the northern South China Sea[J]. Journal of Tropical Oceanography, 2017, 36(2):48-59.] |
[3] | 戴瑜, 刘少军. 深海采矿机器人研究: 现状与发展[J]. 机器人, 2013, 35(3):363-375 doi: 10.3724/SP.J.1218.2013.00363 DAI Yu, LIU Shaojun. Researches on deep ocean mining robots: status and development[J]. Robot, 2013, 35(3):363-375.] doi: 10.3724/SP.J.1218.2013.00363 |
[4] | 陈小玲. 大洋多金属结核矿区表层沉积物的物理性质[J]. 东海海洋, 2004, 22(1):28-33 CHEN Xiaoling. The physical properties of surface sediments in oceanic polymetallic nodule[J]. Donghai Marine Science, 2004, 22(1):28-33.] |
[5] | Deepak C R, Shajahan M A, Atmanand M A, et al. Development tests on the underwater mining system using flexible riser concept[C]//Proceedings of the 4th Ocean Mining Symposium. Cupertino, USA: ISOPE, 2001: 94-98. |
[6] | 殷征欣, 王海峰, 韩金生, 等. 南海边缘海多金属结核与大洋多金属结核对比[J]. 吉林大学学报:地球科学版, 2019, 49(1):261-277 YIN Zhengxin, WANG Haifeng, HAN Jinsheng, et al. Comparison between the marginal-sea polymetallic nodules in South China Sea and Ocean Polymetallic nodules[J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1):261-277.] |
[7] | 吴绍渊. 南海海底稀土元素研究进展[J]. 海洋科学, 2014, 38(3):116-121 doi: 10.11759/hykx20130918004 WU Shaoyuan. Research progress of rare earth elements of the seafloor in the South China Sea[J]. Marine Sciences, 2014, 38(3):116-121.] doi: 10.11759/hykx20130918004 |
[8] | 马雯波, 饶秋华, 吴鸿云, 等. 深海稀软底质土宏观性能与显微结构分析[J]. 岩土力学, 2014, 35(6):1641-1646 MA Wenbo, RAO Qiuhua, WU Hongyun, et al. Macroscopic properties and microstructure analyses of deep-sea sediment[J]. Rock and Soil Mechanics, 2014, 35(6):1641-1646.] |
[9] | 饶秋华, 刘泽霖, 许锋, 等. 深海稀软底质特性及采矿车行走性能研究进展[J]. 中国有色金属学报, 2021, 31(10):2795-2816 doi: 10.11817/j.ysxb.1004.0609.2021-42120 RAO Qiuhua, LIU Zelin, XU Feng, et al. Research progress on characteristics of deep-sea soft sediment and walking performance of mining vehicle[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10):2795-2816.] doi: 10.11817/j.ysxb.1004.0609.2021-42120 |
[10] | Leng D X, Shao S, Xie Y C, et al. A brief review of recent progress on deep sea mining vehicle[J]. Ocean Engineering, 2021, 228:108565. doi: 10.1016/j.oceaneng.2020.108565 |
[11] | Schulte E, Handschuh R, Schwarz W. Transferability of soil mechanical parameters to traction potential calculation of a tracked vehicle[C]//Proceedings of the Fifth ISOPE Ocean Mining Symposium. Tsukuba, Japan: The International Society of Offshore and Polar Engineers, 2003: 123-131. |
[12] | Hong S, Kim H W, Choi J S. Transient dynamic analysis of tracked vehicles on extremely soft cohesive soil[C]//Proceedings of the 5th ISOPE Pacific/Asia Offshore Mechanics Symposium. Daejeon, Korea: The International Society of Offshore and Polar Engineers, 2002: 100-107. |
[13] | 戴瑜, 刘核, 张滔, 等. 海底履带式采矿车行走牵引通过性能研究[J]. 中国科技论文, 2015, 10(10):1203-1208 DAI Yu, LIU He, ZHANG Tao, et al. Research on traction trafficability of seafloor tracked mining vehicle[J]. China Sciencepaper, 2015, 10(10):1203-1208.] |
[14] | 陈峰, 桂卫华, 王随平, 等. 深海底履带机器车建模及仿真研究[J]. 机器人, 2004, 26(6):510-514 doi: 10.3321/j.issn:1002-0446.2004.06.007 CHEN Feng, GUI Weihua, WANG Suiping, et al. Modeling and simulation of a deep seabed tracked vehicle[J]. Robot, 2004, 26(6):510-514.] doi: 10.3321/j.issn:1002-0446.2004.06.007 |
[15] | Qi C L, Rao Q H, Liu Q, et al. Traction rheological properties of simulative soil for deep-sea sediment[J]. Journal of Oceanology and Limnology, 2019, 37(1):62-71. doi: 10.1007/s00343-018-7258-7 |
[16] | 房后国, 刘娉慧, 袁志刚. 海积软土固结过程中微观结构变化特征分析[J]. 水文地质工程地质, 2007, 34(2):49-52,56 doi: 10.3969/j.issn.1000-3665.2007.02.012 FANG Houguo, LIU Pinghui, YUAN Zhigang. Analysis on characteristics of microstructure change during marine soft soil consolidation[J]. Hydrogeology and Engineering Geology, 2007, 34(2):49-52,56.] doi: 10.3969/j.issn.1000-3665.2007.02.012 |
[17] | 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018 SHI Chong, ZHANG Qiang, WANG Shengnian. Numerical Simulation Technology and Application with Particle Flow Code (PFC5.0)[M]. Beijing: China Architecture & Building Press, 2018.] |
[18] | 杨振伟, 金爱兵, 周喻, 等. 伯格斯模型参数调试与岩石蠕变特性颗粒流分析[J]. 岩土力学, 2015, 36(1):240-248 doi: 10.16285/j.rsm.2015.01.033 YANG Zhenwei, JIN Aibing, ZHOU Yu, et al. Parametric analysis of Burgers model and creep properties of rock with particle flow code[J]. Rock and Soil Mechanics, 2015, 36(1):240-248.] doi: 10.16285/j.rsm.2015.01.033 |
[19] | Itasca Consulting Group. PFC3D (Particle flow code in 3 dimensions) theory and background[R]. Minneapolis, USA: Itasca Consulting Group, 2008: 33-39. |
[20] | 中华人民共和国住房和城乡建设部. GB/T 50123-2019 土工试验方法标准[S]. 北京: 中国计划出版社, 2019 Ministry of Housing and Urban Rural Development of the People's Republic of China. GB/T 50123-2019 Standard for geotechnical test method[S]. Beijing: China Planning Press, 2019.] |
[21] | Huang X, Hanley K J, O'Sullivan C, et al. Effect of sample size on the response of DEM samples with a realistic grading[J]. Particuology, 2014, 15:107-115. doi: 10.1016/j.partic.2013.07.006 |
[22] | 石崇, 徐卫亚. 颗粒流数值模拟技巧与实践[M]. 北京: 中国建筑工业出版社, 2015 SHI Chong, XU Weiya. Numerical Simulation Technique and Practice with Particle Flow Code[M]. Beijing: China Architecture & Building Press, 2015.] |
[23] | Shafipour R, Soroush A. Fluid coupled-DEM modelling of undrained behavior of granular media[J]. Computers and Geotechnics, 2008, 35(5):673-685. doi: 10.1016/j.compgeo.2007.12.003 |
[24] | Shimizu H, Murata S, Ishida T. The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(5):712-727. doi: 10.1016/j.ijrmms.2011.04.013 |
[25] | Tomac I, Gutierrez M. Fluid lubrication effects on particle flow and transport in a channel[J]. International Journal of Multiphase Flow, 2014, 65:143-156. doi: 10.1016/j.ijmultiphaseflow.2014.04.007 |
[26] | Catalano E, Chareyre B, Barthélémy E. Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(1):51-71. doi: 10.1002/nag.2198 |
[27] | 吴静. 岩溶隧道突水通道扩展机理、最小防突厚度及逃生路线优化研究[D]. 山东大学博士学位论文, 2018 WU Jing. Expansion of water inrush channel, minimum rock thickness and escape routes optimization of karst tunnel[D]. Doctor Dissertation of Shandong University, 2018.] |
[28] | Bekker M G. Introduction to Terrain-vehicle Systems[M]. Ann Arbor: University of Michigan Press, 1969. |
[29] | Xu F, Rao Q H, Ma W B. Predicting the sinkage of a moving tracked mining vehicle using a new rheological formulation for soft deep-sea sediment[J]. Journal of Oceanology and Limnology, 2018, 36(2):230-237. doi: 10.1007/s00343-018-6344-1 |
The Burger's creep model
The system of servo motor-control dynamic triaxial test
Stress-strain curves under different confining pressures
Numerical model of conventional triaxial test
Results of comparison between laboratory test and numerical simulation
Kunlong 500 deep-sea mining vehicle
3D simplified model of a deep-sea mining vehicle
Computational models of the sea bottom
A computational model of mining car undersea driving
Schematic diagram of solid-liquid phase coupling process
Subsidence curves at different vehicle speeds