Citation: | XIAO Chunfeng, SUN Qishun, CHEN Liang, YIN Zhengxin, CHEN Long, GUAN Yulong, ZHANG Yuzhen, JIANG Zhaoxia. Environmental magnetic characteristics and provenance significance of sediments in NW South China Sea since the past 16 ka[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 13-26. doi: 10.16562/j.cnki.0256-1492.2022091301 |
As the largest marginal sea in the western Pacific Ocean, South China Sea (SCS) is sensitive to the East Asian monsoon and global climate change. The provenance of SCS sediments remains controversial. We carried out a systematic magnetic analysis on Core SCS-02 from the Qiongdongnan Basin, to trace the origin of sediments. Results show that the magnetic carriers of Core SCS-02 sediment are mainly magnetite and hematite. Since 16 kaBP, the particle size and magnetic mineralogy have shown systematic changes, indicating the change of the sedimentary source-sink process. During 15.5~16 kaBP, the sediments were with higher magnetic susceptibility, coarser grain size, and higher coercivity. The sea level was 100 m below the modern one, and the Yingge Sea was above the ancient sea level. The ancient Red River estuary was closer to the study area, leading to more material transported from the old Red River to the depositional area. During 7.5~15.5 kaBP, sea level rose rapidly, the total content of magnetic minerals decreased, but the relative content of magnetite gradually increased, and the magnetic particles became finer, indicating that the contribution of ancient Pearl River and Taiwan increased with the rise of sea level. Since 7.5 kaBP, the modern land and sea pattern had been formed fundamentally, changes in magnetic mineral composition and particle size stabilized relatively, and the sediments were mainly from the modern Red River and the Pearl River. Therefore, the environmental magnetic parameters are good proxies for the source-sink changes of sediments in the South China Sea, and provide an effective reference for the studies of sea level change and climate evolution.
[1] | Kissel C, Liu Z F, Li J H, et al. Magnetic minerals in three Asian rivers draining into the South China Sea: Pearl, Red, and Mekong Rivers [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5): 1678-1693. doi: 10.1002/2016GC006283 |
[2] | Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005 |
[3] | Wan S M, Toucanne S, Clift P D, et al. Human impact overwhelms long-term climate control of weathering and erosion in southwest China [J]. Geology, 2015, 43(5): 439-442. doi: 10.1130/G36570.1 |
[4] | Calvert S E, Pedersen T F. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application [J]. Developments in Marine Geology, 2007, 1: 567-644. |
[5] | 金秉福, 林振宏, 季福武. 海洋沉积环境和物源的元素地球化学记录释读[J]. 海洋科学进展, 2003, 21(1):99-106 doi: 10.3969/j.issn.1671-6647.2003.01.013 JIN Bingfu, LIN Zhenhong, JI Fuwu. Interpretation of element geochemical records of marine sedimentary environment and provenance [J]. Advances in Marine Science, 2003, 21(1): 99-106. doi: 10.3969/j.issn.1671-6647.2003.01.013 |
[6] | 王丽艳, 李广雪. 古气候替代性指标的研究现状及应用[J]. 海洋地质与第四纪地质, 2016, 36(4):153-161 doi: 10.16562/j.cnki.0256-1492.2016.04.018 WANG Liyan, LI Guangxue. Research status and application of paleoclimatic proxies [J]. Marine Geology & Quaternary Geology, 2016, 36(4): 153-161. doi: 10.16562/j.cnki.0256-1492.2016.04.018 |
[7] | 蔡观强, 彭学超, 张玉兰. 南海沉积物物质来源研究的意义及其进展[J]. 海洋科学进展, 2011, 29(1):113-121 doi: 10.3969/j.issn.1671-6647.2011.01.014 CAI Guanqiang, PENG Xuechao, ZHANG Yulan. The significances of and advances in the study of sediment sources in the South China Sea [J]. Advances in Marine Science, 2011, 29(1): 113-121. doi: 10.3969/j.issn.1671-6647.2011.01.014 |
[8] | 刘志飞, 李夏晶, COLIN C, 等. 南海北部末次冰盛期以来高分辨率黏土矿物记录及其时间序列物源区分析[J]. 科学通报, 2010, 55(35):4058-4068 doi: 10.1007/s11434-010-4149-5 LIU Zhifei, LI Xiajing, COLIN C, et al. A high-resolution clay mineralogical record in the northern South China Sea since the Last Glacial Maximum, and its time series provenance analysis [J]. Chinese Science Bulletin, 2010, 55(35): 4058-4068. doi: 10.1007/s11434-010-4149-5 |
[9] | 田成静, 钟和贤, 徐子英, 等. 南海北部陆架海域表层沉积物黏土矿物分布特征及物源分析[J]. 地质学刊, 2018, 42(1):131-136 doi: 10.3969/j.issn.1674-3636.2018.01.018 TIAN Chengjing, ZHONG Hexian, XU Ziying, et al. Distribution characteristics and source analysis of clay minerals in the surface sediments from the shelf of the northern South China Sea [J]. Journal of Geology, 2018, 42(1): 131-136. doi: 10.3969/j.issn.1674-3636.2018.01.018 |
[10] | 吴梦霜, 邵磊, 庞雄, 等. 南海北部深水区沉积物稀土元素特征及其物源指示意义[J]. 沉积学报, 2012, 30(4):672-678 doi: 10.14027/j.cnki.cjxb.2012.04.018 WU Mengshuang, SHAO Lei, PANG Xiong, et al. REE geochemical characteristics of sediments and its implications in the Deepwater area of the Northern South China Sea [J]. Acta Sedimentologica Sinica, 2012, 30(4): 672-678. doi: 10.14027/j.cnki.cjxb.2012.04.018 |
[11] | 赵梦, 邵磊, 梁建设, 等. 古红河沉积物稀土元素特征及其物源指示意义[J]. 地球科学—中国地质大学学报, 2013, 38(S1):61-69 ZHAO Meng, SHAO Lei, LIANG Jianshe, et al. REE character of sediment from the Paleo-Red River and its implication of provenance [J]. Earth Science—Journal of China University of Geosciences, 2013, 38(S1): 61-69. |
[12] | 刘志飞, 赵玉龙, 李建如, 等. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化[J]. 中国科学 D辑:地球科学, 2007, 50(11):1674-1684 doi: 10.1007/s11430-007-0115-8 LIU Zhifei, ZHAO Yulong, LI Jianru, et al. Late Quaternary clay minerals off Middle Vietnam in the western South China Sea: implications for source analysis and East Asian monsoon evolution [J]. Science in China Series D:Earth Sciences, 2007, 50(11): 1674-1684. doi: 10.1007/s11430-007-0115-8 |
[13] | 刘志飞, TRENTESAUX A, CLEMENS S C, 等. 南海北坡ODP1146站第四纪粘土矿物记录: 洋流搬运与东亚季风演化[J]. 中国科学(D辑), 2003, 46(12):1223-1235 doi: 10.1360/02yd0107 LIU Zhifei, TRENTESAUX A, CLEMENS S C, et al. Quaternary clay mineralogy in the northern South China Sea (ODP Site 1146) [J]. Science in China Series D: Earth Sciences, 2003, 46(12): 1223-1235. doi: 10.1360/02yd0107 |
[14] | 刘志飞, COLIN C, 黄维, 等. 珠江流域盆地表层沉积物的黏土矿物及其对南海沉积物的贡献[J]. 科学通报, 2007, 52(8):1101-1111 doi: 10.3321/j.issn:0023-074X.2007.04.013 LIU Zhifei, COLIN C, HUANG Wei, et al. Clay minerals in surface sediments of the Pearl River drainage Basin and their contribution to the South China Sea [J]. Chinese Science Bulletin, 2007, 52(8): 1101-1111. doi: 10.3321/j.issn:0023-074X.2007.04.013 |
[15] | Vitali F, Blanc G, Larqué P, et al. Thermal diagenesis of clay minerals within volcanogenic material from the Tonga convergent margin [J]. Marine Geology, 1999, 157(1-2): 105-125. doi: 10.1016/S0025-3227(98)00134-0 |
[16] | Chamley H. Clay Sedimentology[M]. Berlin: Springer, 1989. |
[17] | Chen Q, Kissel C, Liu Z F. Late Quaternary climatic forcing on the terrigenous supply in the northern South China Sea: Input from magnetic studies [J]. Earth and Planetary Science Letters, 2017, 471: 160-171. doi: 10.1016/j.jpgl.2017.04.047 |
[18] | Xu F J, Hu B Q, Dou Y G, et al. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene [J]. Continental Shelf Research, 2017, 144: 21-30. doi: 10.1016/j.csr.2017.06.013 |
[19] | 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4):1041-1048 doi: 10.3969/j.issn.0001-5733.2009.04.021 LIU Qingsong, DENG Chenglong. Magnetic susceptibility and its environmental significances [J]. Chinese Journal of Geophysics, 2009, 52(4): 1041-1048. doi: 10.3969/j.issn.0001-5733.2009.04.021 |
[20] | 王建, 刘泽纯, 姜文英, 等. 磁化率与粒度、矿物的关系及其古环境意义[J]. 地理学报, 1996, 51(2):155-163 doi: 10.3321/j.issn:0375-5444.1996.02.009 WANG Jian, LIU Zechun, JIANG Wenying, et al. A relationship between susceptibility and grain-size and minerals, and their paleo-environmental implications [J]. Acta Geographica Sinica, 1996, 51(2): 155-163. doi: 10.3321/j.issn:0375-5444.1996.02.009 |
[21] | Kissel C, Laj C, Jian Z, et al. Past environmental and circulation changes in the South China Sea: Input from the magnetic properties of deep-sea sediments [J]. Quaternary Science Reviews, 2020, 236: 106263. doi: 10.1016/j.quascirev.2020.106263 |
[22] | 舒业强, 王强, 俎婷婷. 南海北部陆架陆坡流系研究进展[J]. 中国科学(D辑):地球科学, 2018, 61(5):560-571 doi: 10.1007/s11430-017-9152-y SHU Yeqiang, WANG Qiang, ZU Tinging. Progress on shelf and slope circulation in the northern South China Sea [J]. Science China Earth Sciences, 2018, 61(5): 560-571. doi: 10.1007/s11430-017-9152-y |
[23] | 刘伟. 南海北部陆坡MIS5以来的古环境记录[D]. 中国地质大学(北京)博士学位论文, 2012 LIU Wei. Paleoclimatic records from northern slope of South China Sea since the marine isotope stage 5[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2012. |
[24] | Liu Z F, Stattegger K. South China Sea fluvial sediments: An introduction [J]. Journal of Asian Earth Sciences, 2014, 79: 507-508. doi: 10.1016/j.jseaes.2013.11.003 |
[25] | Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans [J]. The Journal of Geology, 1983, 91(1): 1-21. doi: 10.1086/628741 |
[26] | Liu Z F, Tuo S, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation [J]. Marine Geology, 2008, 255(3-4): 149-155. doi: 10.1016/j.margeo.2008.08.003 |
[27] | Liu Z F, Zhao Y L, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments [J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025 |
[28] | Kissel C, Liu Z F, Li J H, et al. Magnetic signature of river sediments drained into the southern and eastern part of the South China Sea (Malay Peninsula, Sumatra, Borneo, Luzon and Taiwan) [J]. Sedimentary Geology, 2017, 347: 10-20. doi: 10.1016/j.sedgeo.2016.11.007 |
[29] | Liu J G, Clift P D, Yan W, et al. Modern transport and deposition of settling particles in the northern South China Sea: Sediment trap evidence adjacent to Xisha Trough [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2014, 93: 145-155. doi: 10.1016/j.dsr.2014.08.005 |
[30] | Cui Z N, Schulz-Bull D E, Hou Y M, et al. Geochemical characteristics and provenance of Holocene sediments (Core STAT22) in the Beibu Gulf, South China Sea [J]. Journal of Coastal Research, 2016, 321: 1105-1115. doi: 10.2112/JCOASTRES-D-14-00238.1 |
[31] | Liu J G, Rong X, Chen Z, et al. Sources, transport and deposition of surface sediments from the South China Sea [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2013, 71: 92-102. doi: 10.1016/j.dsr.2012.09.006 |
[32] | Li M K, Ouyang T P, Roberts A P, et al. Influence of sea level change and centennial east Asian monsoon variations on northern South China Sea sediments over the past 36 kyr [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(5): 1674-1689. doi: 10.1029/2017GC007321 |
[33] | Huang J, Wan S M, Xiong Z F, et al. Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 871-881. doi: 10.1016/j.palaeo.2015.10.036 |
[34] | Kissel C, Laj C, Clemens S, et al. Magnetic signature of environmental changes in the last 1.2 Myr at ODP Site 1146, South China Sea [J]. Marine Geology, 2003, 201(1-3): 119-132. doi: 10.1016/S0025-3227(03)00212-3 |
[35] | Xu F J, Hu B Q, Zhao J T, et al. Provenance and weathering of sediments in the deep Basin of the northern South China Sea during the last 38 kyr [J]. Marine Geology, 2021, 440: 106602. doi: 10.1016/j.margeo.2021.106602 |
[36] | 姚衍桃, HARFF J, MEYER M, 等. 南海西北部末次盛冰期以来的古海岸线重建[J]. 中国科学 (D辑):地球科学, 2009, 52(8):1127-1136 doi: 10.1007/s11430-009-0098-8 YAO Yantao, HARFF J, MEYER M, et al. Reconstruction of paleocoastlines for the northwestern South China Sea since the Last Glacial Maximum [J]. Science in China Series D:Earth Sciences, 2009, 52(8): 1127-1136. doi: 10.1007/s11430-009-0098-8 |
[37] | 万世明, 秦琳, 杨守业, 等. 南海冰期陆架风化与碳循环[J]. 第四纪研究, 2020, 40(6):1532-1549 doi: 10.11928/j.issn.1001-7410.2020.06.14 WAN Shiming, QIN Lin, YANG Shouye, et al. South China Sea shelf weathering in glacial periods and its link to carbon cycle [J]. Quaternary Sciences, 2020, 40(6): 1532-1549. doi: 10.11928/j.issn.1001-7410.2020.06.14 |
[38] | Bloemendal J, King J W, Hall F R, et al. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology [J]. Journal of Geophysical Research, 1992, 97(B4): 4361-4375. doi: 10.1029/91JB03068 |
[39] | Robinson S G. The Late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements [J]. Physics of the Earth and Planetary Interiors, 1986, 42(1-2): 22-47. doi: 10.1016/S0031-9201(86)80006-1 |
[40] | Roberts A P, Pike C R, Verosub K L. First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples [J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B12): 28461-28475. doi: 10.1029/2000JB900326 |
[41] | Pike C R, Roberts A P, Verosub K L. Characterizing interactions in fine magnetic particle systems using first order reversal curves [J]. Journal of Applied Physics, 1999, 85(9): 6660-6667. doi: 10.1063/1.370176 |
[42] | Harrison R J, Feinberg J M. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05016. |
[43] | Thompson R, Oldfield F. Environmental Magnetism[M]. London: Environmental Magnetism, 1986. |
[44] | 欧阳婷萍, 田成静, 朱照宇, 等. 南海南部YSJD-86GC孔沉积物磁性特征及其环境意义[J]. 科学通报, 2014, 59(25):3176-3187 doi: 10.1007/s11434-014-0438-8 OUYANG Tingping, TIAN Chengjing, ZHU Zhaoyu, et al. Magnetic characteristics and its environmental implications of core YSJD-86GC sediments from the southern South China Sea [J]. Chinese Science Bulletin, 2014, 59(25): 3176-3187. doi: 10.1007/s11434-014-0438-8 |
[45] | 刘青松, 邓成龙, 潘永信. 磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义[J]. 第四纪研究, 2007, 27(6):955-962 doi: 10.3321/j.issn:1001-7410.2007.06.010 LIU Qingsong, DENG Chenglong, PAN Yongxin. Temperature-dependency and frequency-dependency of magnetic susceptibility of magnetite and maghemite and their significance for environmental magnetism [J]. Quaternary Sciences, 2007, 27(6): 955-962. doi: 10.3321/j.issn:1001-7410.2007.06.010 |
[46] | Reilly W O. Rock and Mineral Magnetism[M]. New York: Springer, 1984. |
[47] | Hrouda F. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge [J]. Geophysical Journal International, 1994, 118(3): 604-612. doi: 10.1111/j.1365-246X.1994.tb03987.x |
[48] | Van Velzen A J, Dekkers M J. The incorporation of thermal methods in mineral magnetism of loess-paleosol sequences: a brief overview [J]. Chinese Science Bulletin, 1999, 44(S1): 53-63. |
[49] | Evans E M, Heller F. Environmental Magnetism: Principles and Applications of Enviromagnetics[M]. Oxford: Academic Press, 2003. |
[50] | Maher B A. Magnetic properties of some synthetic sub-micron magnetites [J]. Geophysical Journal International, 1988, 94(1): 83-96. doi: 10.1111/j.1365-246X.1988.tb03429.x |
[51] | Banerjee S K, King J, Marvin J. A rapid method for magnetic granulometry with applications to environmental studies [J]. Geophysical Research Letters, 1981, 8(4): 333-336. doi: 10.1029/GL008i004p00333 |
[52] | Lascu I, Wohlfarth B, Onac B P, et al. A Late Glacial paleolake record from an up-dammed river valley in northern Transylvania, Romania [J]. Quaternary International, 2015, 388: 87-96. doi: 10.1016/j.quaint.2014.11.041 |
[53] | Roberts A P, Heslop D, Zhao X, et al. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams [J]. Reviews of Geophysics, 2014, 52(4): 557-602. doi: 10.1002/2014RG000462 |
[54] | Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies [J]. Developments in Geochemistry, 1984, 2: 63-114. |
[55] | Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Publishing, 1985. |
[56] | 赵志根, 高良敏. δEu、δCe计算方法的标准化问题[J]. 标准化报道, 1998, 19(5):23-25 ZHAO Zhigen, GAO Liangmin. Discussion about standardization of methods to calculate δEu、δCe [J]. Reporting of Standardization, 1998, 19(5): 23-25. |
[57] | 王中刚, 于学元, 赵振华, 等. 稀土元素地球化学[M]. 北京: 科学出版社, 1989 WANG Zhonggang, YU Xueyuan, ZHAO Zhenhua, et al. Geochemistry of Rare Earth Elements[M]. Beijing: Science Press, 1989. |
[58] | 周国兴, 赵恩好, 岳明新, 等. 稀土元素地球化学分析在地质学中的意义[J]. 地质与资源, 2014, 23(5):495-499 doi: 10.3969/j.issn.1671-1947.2014.05.016 ZHOU Guoxing, ZHAO Enhao, YUE Mingxin, et al. geological significance of rare earth elements in geochemical analysis [J]. Geology and Resources, 2014, 23(5): 495-499. doi: 10.3969/j.issn.1671-1947.2014.05.016 |
[59] | Roberts A P. Magnetic mineral diagenesis [J]. Earth-Science Reviews, 2015, 151: 1-47. doi: 10.1016/j.earscirev.2015.09.010 |
[60] | 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2):164-167 doi: 10.3321/j.issn:1001-8166.1999.02.010 YANG Shouye, LI Congxian. Research progress in REE tracer for sediment source [J]. Acta Electronica Sinica, 1999, 14(2): 164-167. doi: 10.3321/j.issn:1001-8166.1999.02.010 |
[61] | Frey F A, Haskin L. Rare earths in oceanic basalts [J]. Journal of Geophysical Research, 1964, 69(4): 775-780. doi: 10.1029/JZ069i004p00775 |
[62] | 赵一阳, 王金土, 秦朝阳, 等. 中国大陆架海底沉积物中的稀土元素[J]. 沉积学报, 1990, 8(1):37-43 doi: 10.14027/j.cnki.cjxb.1990.01.005 ZHAN Yiyang, WANG Jintu, QIN Chaoyang, et al. Rare-earth elements in continental shelf sediments of the China seas [J]. Acta Sedimentologica Sinica, 1990, 8(1): 37-43. doi: 10.14027/j.cnki.cjxb.1990.01.005 |
[63] | Bayon G, Toucanne S, Skonieczny C, et al. Rare earth elements and neodymium isotopes in world river sediments revisited [J]. Geochimica et Cosmochimica Acta, 2015, 170: 17-38. doi: 10.1016/j.gca.2015.08.001 |
[64] | Gaillardet J, Dupré B, Allègre C J. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer? [J]. Geochimica et Cosmochimica Acta, 1999, 63(23-24): 4037-4051. doi: 10.1016/S0016-7037(99)00307-5 |
[65] | Wang S H, Zhang N, Chen H, et al. The surface sediment types and their rare earth element characteristics from the continental shelf of the northern South China Sea [J]. Continental Shelf Research, 2014, 88: 185-202. doi: 10.1016/j.csr.2014.08.005 |
[66] | Li C S, Shi X F, Kao S J, et al. Rare earth elements in fine-grained sediments of major rivers from the high-standing island of Taiwan [J]. Journal of Asian Earth Sciences, 2013, 69: 39-47. doi: 10.1016/j.jseaes.2013.03.001 |
[67] | Marini J C, Chauvel C, Maury R C. Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source [J]. Contributions to Mineralogy and Petrology, 2005, 149(2): 216-232. doi: 10.1007/s00410-004-0645-4 |
[68] | Colin C, Turpin L, Blamart D, et al. Evolution of weathering patterns in the Indo-Burman Ranges over the last 280 kyr: Effects of sediment provenance on 87Sr/86Sr ratios tracer [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(3): Q03007. |
Location of core SCS-02 and water currents in the South China Sea
AMS14C ages, lithology, age model, and deposition rate of the Core SCS-02
Magnetic fabric characteristics of Core SCS-02
Down-core lithological and magnetic parameters of Core SCS-02
Rock magnetic results of typical samples of Core SCS-02
Correlations of grain size with ∑REE, Hf+Zr, and Th+U
Scatterplots of S-ratio and χARM
Down-core variations of environmental magnetic parameters
Results of normalized rare earth element of Core SCS-02
Down-core profiles of relative sea level