2023 Vol. 43, No. 2
Article Contents

SHI Ming, DAI Zhijun, LOU Yaying, MEI Xuefei. The vertical changes of suspended sediment in the turbidity maximum zone along the South Passage of the Changjiang River Estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 66-76. doi: 10.16562/j.cnki.0256-1492.2022081201
Citation: SHI Ming, DAI Zhijun, LOU Yaying, MEI Xuefei. The vertical changes of suspended sediment in the turbidity maximum zone along the South Passage of the Changjiang River Estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 66-76. doi: 10.16562/j.cnki.0256-1492.2022081201

The vertical changes of suspended sediment in the turbidity maximum zone along the South Passage of the Changjiang River Estuary

More Information
  • Temporal and spatial variation processes of suspended sediment in the estuary turbidity maximum zone (TMZ) is one of the crucial issues of estuarine sedimentation dynamics. Based on hourly hydrological data and suspended sediment samples collected on June 16—24, 2013 covering a complete neap-spring tide cycle, the vertical changing characteristics and related dominant mechanism of suspended sediments in the TMZ in the South Passage (SP) were analyzed to deepen the understanding of TMZ formation and evolution in the Changjiang River estuary. Results show that: (1) the average grain size of the suspended sediment ranged 3.52~18.84 μm while the suspended sediment concentration (SSC) fluctuated between 0.12 ~2.29 g/L. The SSC was increased from neap tide to spring tide in temporal scale, and from surface to bottom in spatial scale. (2) The current velocity increased from bottom to surface and from neap tide to spring tide, and correlated closely with the average grain size of suspended sediment. The salinity decreased from bottom to surface and from spring tide to neap tide and correlated closely with the SSC. (3) The vertical changes of the suspended sediment exhibited two types of controlling mechanisms: the bed sediment resuspension under flood and ebb tidal forces, which generated a periodical change of 7 hours, and the sediment flocculation under the forces of flood tide and gravity, which generated a periodical change of 14 hours.

  • 加载中
  • [1] 沈焕庭. 国外河口水文研究的动向[J]. 地理学报, 1988, 43(3): 274-280

    Google Scholar

    SHEN Huanting. Tendency of studies on estuarine hydrology in foreign countries. Acta Geographica Sinica, 1998, 43(3): 274-280.

    Google Scholar

    [2] 林伟波, 孔德雨, 罗锋, 等. 瓯江口细颗粒泥沙沉速计算方法研究[J]. 水力发电学报, 2013, 32(4):114-119

    Google Scholar

    LIN Weibo, KONG Deyu, LUO Feng, et al. Study on determination method for settling velocity of fine sediment in Oujiang river estuary [J]. Journal of Hydroelectric Engineering, 2013, 32(4): 114-119.

    Google Scholar

    [3] 黄李冰, 李义天, 孙昭华, 等. 长江口水流运动对悬沙分布的影响[J]. 水力发电学报, 2015, 34(1):55-62

    Google Scholar

    HUANG Libing, LI Yitian, SUN Zhaohua, et al. Influence of water movement on the distribution of suspended sediment in the Yangtze estuary [J]. Journal of Hydroelectric Engineering, 2015, 34(1): 55-62.

    Google Scholar

    [4] Burchard H, Schuttelaars H M, Ralston D K. Sediment Trapping in Estuaries [J]. Annual Review of Marine Science, 2018, 10(1): 371-395. doi: 10.1146/annurev-marine-010816-060535

    CrossRef Google Scholar

    [5] Yang Y P, Li Y T, Sun Z H, et al. Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary: The trends and causes [J]. Journal of Geographical Sciences, 2014, 24(1): 129-142. doi: 10.1007/s11442-014-1077-3

    CrossRef Google Scholar

    [6] Islam M R, Begum S F, Yamaguchi Y, et al. Distribution of suspended sediment in the coastal sea off the Ganges–Brahmaputra River mouth: observation from TM data [J]. Journal of Marine Systems, 2002, 32(4): 307-321. doi: 10.1016/S0924-7963(02)00045-3

    CrossRef Google Scholar

    [7] Lucotte M, D’Anglejan B. Seasonal control of the Saint-Lawrence maximum turbidity zone by tidal-flat sedimentation [J]. Estuaries., 1986, 9(1): 84-94.

    Google Scholar

    [8] Serra T, Soler M, Barcelona A ,et al. Suspended sediment transport and deposition in sediment-replenished artificial floods in Mediterranean rivers[J], Journal of Hydrology, 2022, 609, 127756.

    Google Scholar

    [9] Teng L Z, Cheng H Q, De Swart H E, et al. On the mechanism behind the shift of the turbidity maximum zone in response to reclamations in the Yangtze (Changjiang) Estuary, China[J]. Marine Geology, 2021, 440, 106569.

    Google Scholar

    [10] Li Y, Wang Y P, Zhu Q G, et al. Roles of advection and sediment resuspension-settling in the turbidity maximum zone of the Changjiang Estuary, China[J], Continental Shelf Research, 2021, 229, 104599

    Google Scholar

    [11] 严冬, 宋德海, 鲍献文. 珠江口洪季最大浑浊带的大小潮变化与机制分析[J]. 热带海洋学报, 2020, 39(1):20-35

    Google Scholar

    YAN Dong, SONG Dehai, BAO Xianwen. Spring-neap tidal variation and mechanism analysis of the maximum turbidity in the Pearl River Estuary during flood season [J]. Journal of Tropical Oceanography, 2020, 39(1): 20-35.

    Google Scholar

    [12] 程亦菲, 夏军强, 周美蓉, 等. 黄河下游不同河段分组悬沙输移对河床冲淤的影响[J]. 水科学进展, 2022, 33(3):506-517 doi: 10.14042/j.cnki.32.1309.2022.03.014

    CrossRef Google Scholar

    CHENG Yifei, XIA Junqiang, ZHOU Meirong ,et al. Effects of grouped suspended sediment transport on channel evolution in the Lower Yellow River [J]. Advances in Water Science, 2022, 33(3): 506-517. doi: 10.14042/j.cnki.32.1309.2022.03.014

    CrossRef Google Scholar

    [13] 杨云平, 李义天, 孙昭华, 等. 长江口最大浑浊带悬沙浓度变化趋势及成因[J]. 地理学报, 2013, 68(9):1240-1250 doi: 10.11821/dlxb201309007

    CrossRef Google Scholar

    YANG Yunping, LI Yitian, SUN Zhaohua, et al. Trends and causes of suspended sediment concentration variation in the turbidity maxi- mum zone at the Yangtze River Estuary [J]. Acta Oceanologica Sinica, 2013, 68(9): 1240-1250. doi: 10.11821/dlxb201309007

    CrossRef Google Scholar

    [14] Liu G P, Cai S Q. Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary [J]. Acta Oceanol Sinica., 2019, 38(7): 22-35. doi: 10.1007/s13131-019-1455-3

    CrossRef Google Scholar

    [15] 李为华, 李九发, 时连强, 等. 黄河口泥沙特性和输移研究综述[J]. 泥沙研究, 2005(3):76-81 doi: 10.3321/j.issn:0468-155X.2005.03.013

    CrossRef Google Scholar

    LI Weihua, LI Jiufa, SHI Lianqiang, et al. Review on the research of sediment properties and transportation rules of the Huanghe estuary, China [J]. Journal of Sediment Research, 2005(3): 76-81. doi: 10.3321/j.issn:0468-155X.2005.03.013

    CrossRef Google Scholar

    [16] 赵季伟, 李占海, 徐圣, 等. 长江口北港上段河道枯季悬沙浓度垂向分布特征研究[J]. 长江流域资源与环境, 2019, 28(9):2207-2218

    Google Scholar

    ZHAO Jiwei, LI Zhanhai, XU Sheng, et al. Vertical profile of suspended sediment concentration in the upper reach of north channel in theChangjiang Estuary during the dry season [J]. Resources and Environment in the Yangtze Basin, 2019, 28(9): 2207-2218.

    Google Scholar

    [17] Zhou X Y, Dai Z J, Mei X F. The multi-decadal morphodynamic changes of the mouth bar in a mixed fluvial-tidal estuarine channel [J]. Marine Geology, 2020, 429: 106311. doi: 10.1016/j.margeo.2020.106311

    CrossRef Google Scholar

    [18] 沈焕庭, 朱慧芳, 茅志昌. 长江河口环流及其对悬浮泥沙输移的影响[J]. 海洋与湖沼, 1986, 17(1):26-35

    Google Scholar

    SHEN Huantin, ZHU Huifang, MAO Zhichang. Circulation of the Changjiang river estuary and its effect on the transport of suspended sediment [J]. Oceanologia et Limnologia Sinica, 1986, 17(1): 26-35.

    Google Scholar

    [19] 施韩臻, 李占海, 汪亚平, 等. 枯季长江口南槽悬沙输运过程和机制研究[J]. 海洋通报, 2021, 40(6):664-674

    Google Scholar

    SHI Hanzhen, LI Zhanhai, WANG Yaping, et al. Suspended sediment transports and mechanism in the South Passage of the Changjiang Estuary during the dry season [J]. Marine Science Bulletin, 2021, 40(6): 664-674.

    Google Scholar

    [20] 李一鸣, 张国安, 游博文, 等. 长江河口河槽近期沉积特征及影响因子分析[J]. 地理学报, 2019, 74(1):178-190 doi: 10.11821/dlxb201901013

    CrossRef Google Scholar

    LIYiming, ZHANG Guoan, YOU Bowen, et al. Recent sediment characteristics and their impact factors in the Yangtze Estuary riverbed [J]. Acta Georaphica Sinica, 2019, 74(1): 178-190. doi: 10.11821/dlxb201901013

    CrossRef Google Scholar

    [21] 戴志军, 韩震, 恽才兴. 长江口南槽沉积物特征和运移趋势[J]. 海洋湖沼通报, 2005, 7(2):72-78 doi: 10.3969/j.issn.1003-6482.2005.02.013

    CrossRef Google Scholar

    DAI Zhijun, HAN Zhen, YUN Caixing. The Yangtze River estuary sediment characteristics and transport tendency [J]. Transactions of Oceanology and Limnology, 2005, 7(2): 72-78. doi: 10.3969/j.issn.1003-6482.2005.02.013

    CrossRef Google Scholar

    [22] 张钊, 李占海, 张国安,等. 长江口南槽中段枯季水沙输运特征研究[J]. 长江流域资源与环境, 2016, 25(12):1832-1841 doi: 10.11870/cjlyzyyhj201612006

    CrossRef Google Scholar

    ZHANG Zhao, LI Zhanhai, ZHANG Guoan, et al. Water and suspended sediment transports in the middle reach of the south passage in the Chengjiang estuary during the dry season [J]. Resources and Environment in the Yangtze Basin, 2016, 25(12): 1832-1841. doi: 10.11870/cjlyzyyhj201612006

    CrossRef Google Scholar

    [23] 李远, 李占海, 张钊, 等. 长江口北槽下游河道悬沙浓度垂向分布特征研究[J]. 华东师范大学学报:自然科学版, 2017, 60(6):114-125

    Google Scholar

    LI Yuan, LI Zhanhai, ZHANG Zhao, et al. Vertical distribution patterns of suspended sediment concentration in the North Passage of the Changjiang Estuary [J]. Journal of East China Normal University(Natural Science), 2017, 60(6): 114-125.

    Google Scholar

    [24] 刘耀彬, 李仁东, 宋学锋. 中国区域城市化与生态环境耦合的关联分析[J]. 地理学报, 2005, 60(2):237-247 doi: 10.3321/j.issn:0375-5444.2005.02.007

    CrossRef Google Scholar

    LIU Yaobin, LI Rendon, SONG Xuefeng. Grey associative analysis of regional urbanization and eco-environment coupling in China [J]. Acta Geographica Sinica, 2005, 60(2): 237-247. doi: 10.3321/j.issn:0375-5444.2005.02.007

    CrossRef Google Scholar

    [25] 吴增斌, 郭磊城, 吴雪枫, 等. 2020年特大洪水作用下长江口南槽水沙输移特征[J]. 海洋与湖沼, 2022, 53(2):295-304 doi: 10.11693/hyhz20210800194

    CrossRef Google Scholar

    WU ZengBin, GUO LeiCheng, WU XueFeng, et al. A Field Study of Hydrodnamics and Sediment Transport in the South Passage of the Changjiang Estuary During Big River Flood in July 2020 [J]. Oceanologia et Limnologia Sinica, 2022, 53(2): 295-304. doi: 10.11693/hyhz20210800194

    CrossRef Google Scholar

    [26] 谢丽莉, 刘霞, 杨清书, 等. 人类活动驱动下伶仃洋洪季大潮水沙异变[J]. 泥沙研究, 2015, 60(3): 56-62

    Google Scholar

    XIE Lili, LIU Xia, YANG Qingshu, et al.Variations of current and sediment transport in Lingding Bay during spring tide in flood season driven by human activities[J]. Journal of Sediment Research, 2015, 60(3): 56-62.

    Google Scholar

    [27] 李九发, 戴志军, 刘启贞, 等. 长江河口絮凝泥沙颗粒粒径与浮泥形成现场观测[J]. 泥沙研究, 2008, 53(3):26-32 doi: 10.16239/j.cnki.0468-155x.2008.03.003

    CrossRef Google Scholar

    LI Jiufa, DAI Zhijun, LIU Qizhen, et al. Field observation of floc particle size and floating mud in the Changjiang Estuary [J]. Journal of Sediment Research, 2008, 53(3): 26-32. doi: 10.16239/j.cnki.0468-155x.2008.03.003

    CrossRef Google Scholar

    [28] 田枫, 欧素英, 杨昊, 等. 伶仃洋河口泥沙絮凝特征及影响因素研究[J]. 海洋学报, 2017, 39(3):55-67

    Google Scholar

    TIAN Feng, OU Suying, YANG Hao, et al. Study on the flocs characteristic and dynamics effects in the Lingdingyang Estuary [J]. Acta Oceanologica Sinica, 2017, 39(3): 55-67.

    Google Scholar

    [29] 陆子骞, 张国安, 张卫国, 等. 泥沙来源减少后长江口最大浑浊带变化研究[J]. 泥沙研究, 2022, 47(3):67-72

    Google Scholar

    LU Ziqian, ZHANG Guoan, ZHANG Weiguo, et al. Processes of the maximum turbidity zone of the Yangtze Estuary under the background of reduced sediment sources [J]. Journal of Sediment Research, 2022, 47(3): 67-72.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(1340) PDF downloads(24) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint