Citation: | HUANG Long, GENG Wei, LU Kai, TIAN Zhenxing, ZHANG Yong, WEN Zhenhe. Rare earth element composition and provenance implication of sediments in the Central South Yellow Sea since MIS6[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 92-105. doi: 10.16562/j.cnki.0256-1492.2022072501 |
Rare earth elements (REE) and grain size in the 0~30 m section of Core SYSC-1 sediments taken from the Central South Yellow Sea were analyzed. Combined with geochronic age dated, the composition characteristics and influencing factors of REE in sediments were studied, and the changes in their material sources were discussed. The vertical distribution of ∑REE varied greatly from 111.66 to 231.12μg/g, and the average value is similar to loess REE in China. A certain correlation between ∑REE and grain size variation was revealed. The value of (La/Yb)N, (Gd/Yb)N, and (δEu)N were less affected by particle size, which effectively reflected the provenance of sediments. Compared with the sediments of surrounding rivers, the distribution of (La/Yb)N and (δEu)N in scatter map are close to those of the Yellow River and the Yangtze River, but significantly different from those of the rivers in the Korean Peninsula. The provenance results of REE discriminant function (DF) show that the borehole experienced a sudden change in provenance during MIS6 from the Yangtze River source (27.98~30 m) to the Yellow River source (24.24~27.98m). During the MIS5.5—MIS5.1, shallow shelf cold water mass deposits (24.24~16.98 m) were developed. They were mainly composed of fine-grained sediments from the source of the Yangtze River, which were carried out northward by the ancient Yellow Sea warm current, and deposited near the cold vortex area. During the low sea level period from MIS5.1 to MIS1 (16.98~3 m), a set of littoral and shallow sea, estuarine/tidal flat and delta deposits were mainly developed. With the rapid decrease of sea level, the shelf accommodation space was reduced, which led to the shift of estuaries of the Yellow River and the Yangtze River towards shelf area, and the Yellow River sediments controlled the northern area of the South Yellow Sea. In the middle and late MIS1, the formation of the Shandong Peninsula coastal current mainly confined the Yellow River sediments to the western part of the South Yellow Sea, while the Yellow Sea warm current transported the fine particles of the Yangtze River source to the cold vortex area near the core SYSC-1 in the southwest of Jeju Island. In general, the sedimentary evolution of the central area of the South Yellow Sea since MIS6 is a good example of interaction between sea and river in the western Pacific margin. Sea level fluctuations and ocean circulation changes play an important role in the change of provenance.
[1] | Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last ~3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications [J]. Marine Geology, 2018, 399: 47-65. doi: 10.1016/j.margeo.2017.11.005 |
[2] | Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003 |
[3] | Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea [J]. Earth-Science Reviews, 2003, 63(1-2): 93-120. doi: 10.1016/S0012-8252(03)00033-3 |
[4] | 窦衍光, 李军, 杨守业. 山东半岛东部海域表层沉积物元素组成及物源指示意义[J]. 海洋学报, 2012, 34(1):109-119 DOU Yanguang, LI Jun, YANG Shouye. Element compositions and provenance implication of surface sediments in offshore areas of the eastern Shandong Peninsula in China [J]. Acta Oceanologica Sinica, 2012, 34(1): 109-119. |
[5] | Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009 |
[6] | Yang S Y, Youn J S. Geochemical compositions and provenance discrimination of the central South Yellow Sea sediments [J]. Marine Geology, 2007, 243(1-4): 229-241. doi: 10.1016/j.margeo.2007.05.001 |
[7] | Gao X B, Ou J, Guo S Q, et al. Sedimentary history of the coastal plain of the south Yellow Sea since 5.1 Ma constrained by high-resolution magnetostratigraphy of onshore borehole core GZK01 [J]. Quaternary Science Reviews, 2020, 239: 106355. doi: 10.1016/j.quascirev.2020.106355 |
[8] | 杨子赓. Olduvai亚时以来南黄海沉积层序及古地理变迁[J]. 地质学报, 1993, 67(4):357-366 YANG Zigeng. The sedimentary sequence and palaeogeographic changes of the South Yellow Sea since the Olduvai subchron [J]. Acta Geologica Sinica, 1993, 67(4): 357-366. |
[9] | Lee H J, Chough S K. Sediment distribution, dispersal and budget in the Yellow Sea [J]. Marine Geology, 1989, 87(2-4): 195-205. doi: 10.1016/0025-3227(89)90061-3 |
[10] | 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 科学出版社, 1989: 1-289 QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology in the Yellow Sea[M]. Beijing: Science Press, 1989: 1-289. |
[11] | Lee H J, Chu Y S. Origin of inner-shelf mud deposit in the southeastern Yellow Sea: Huksan mud belt [J]. Journal of Sedimentary Research, 2001, 71(1): 144-154. doi: 10.1306/040700710144 |
[12] | 赵一阳, 李凤业, 秦朝阳, 等. 试论南黄海中部泥的物源及成因[J]. 地球化学, 1991, 20(2):112-117 doi: 10.3321/j.issn:0379-1726.1991.02.002 ZHAO Yiyang, LI Fengye, QIN Zhaoyang, et al. Source and genesis of mud in the central part of the South Yellow Sea in special reference to geochemical data [J]. Geochimica, 1991, 20(2): 112-117. doi: 10.3321/j.issn:0379-1726.1991.02.002 |
[13] | Chough S K, Kwon S T, Ree J H, et al. Tectonic and sedimentary evolution of the Korean peninsula: a review and new view [J]. Earth-Science Reviews, 2000, 52(1-3): 175-235. doi: 10.1016/S0012-8252(00)00029-5 |
[14] | Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008 |
[15] | Dong L X, Guan W B, Chen Q, et al. Sediment transport in the Yellow Sea and East China Sea [J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 248-258. doi: 10.1016/j.ecss.2011.04.003 |
[16] | Zhang J Q, Liu J, Wang H X, et al. Characteristics and provenance implication of detrital minerals since Marine Isotope Stage 3 in Core SYS-0701 in the western South Huanghai Sea [J]. Acta Oceanologica Sinica, 2013, 32(4): 49-58. doi: 10.1007/s13131-013-0281-9 |
[17] | Pico T, Mitrovica J X, Ferrier K L, et al. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta [J]. Quaternary Science Reviews, 2016, 152: 72-79. doi: 10.1016/j.quascirev.2016.09.012 |
[18] | Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: Tectonic or climate forcing? [J]. Quaternary Science Reviews, 2019, 216: 74-88. doi: 10.1016/j.quascirev.2019.06.002 |
[19] | Huang J, Wan S M, Zhang J, et al. Mineralogical and isotopic evidence for the sediment provenance of the western South Yellow Sea since MIS 3 and implications for paleoenvironmental evolution [J]. Marine Geology, 2019, 414: 103-117. doi: 10.1016/j.margeo.2019.05.011 |
[20] | 蓝先洪, 张宪军, 赵广涛, 等. 南黄海NT1孔沉积物稀土元素组成与物源判别[J]. 地球化学, 2009, 38(2):123-132 doi: 10.3321/j.issn:0379-1726.2009.02.003 LAN Xianhong, ZHANG Xianjun, ZHAO Guangtao, et al. Distributions of rare earth elements in sediments from Core NT1 of the South Yellow Sea and their provenance discrimination [J]. Geochimica, 2009, 38(2): 123-132. doi: 10.3321/j.issn:0379-1726.2009.02.003 |
[21] | Sun Z Y, Li G, Yin Y. The Yangtze River deposition in southern Yellow Sea during marine oxygen isotope stage 3 and its implications for sea-level changes [J]. Quaternary Research, 2015, 83(1): 204-215. doi: 10.1016/j.yqres.2014.08.008 |
[22] | Su M, Yao P, Wang Z B, et al. Exploratory morphodynamic hindcast of the evolution of the abandoned Yellow River delta, 1578-1855 CE [J]. Marine Geology, 2017, 383: 99-119. doi: 10.1016/j.margeo.2016.11.007 |
[23] | Xue C T, Qin Y C, Ye S Y, et al. Evolution of Holocene ebb-tidal clinoform off the Shandong Peninsula on East China Sea shelf [J]. Earth-Science Reviews, 2018, 177: 478-496. doi: 10.1016/j.earscirev.2017.12.012 |
[24] | 王中波, 张江勇, 梅西, 等. 中国陆架海MIS5(74~128 ka)以来地层及其沉积环境[J]. 中国地质, 2020, 47(5):1370-1394 WANG Zhongbo, ZHANG Jiangyong, MEI Xi, et al. The stratigraphy and depositional environments of China’s sea shelves since MIS5(74-128)ka [J]. Geology in China, 2020, 47(5): 1370-1394. |
[25] | 张现荣, 李军, 窦衍光, 等. 辽东湾东南部海域柱状沉积物稀土元素地球化学特征与物源识别[J]. 沉积学报, 2014, 32(4):684-691 doi: 10.14027/j.cnki.cjxb.2014.04.002 ZHANG Xianrong, LI Jun, DOU Yanguang, et al. REE Geochemical characteristics and provenance discrimination of core LDC30 in the southeastern part of Liaodong bay [J]. Acta Sedimentologica Sinica, 2014, 32(4): 684-691. doi: 10.14027/j.cnki.cjxb.2014.04.002 |
[26] | 杨守业, 李从先. 长江与黄河沉积物REE地球化学及示踪作用[J]. 地球化学, 1999, 28(4):374-380 doi: 10.3321/j.issn:0379-1726.1999.04.008 YANG Shouye, LI Congxian. REE geochemistry and tracing application in the Yangtze River and the Yellow River sediments [J]. Geochimica, 1999, 28(4): 374-380. doi: 10.3321/j.issn:0379-1726.1999.04.008 |
[27] | 赵一阳, 王金土, 秦朝阳, 等. 中国大陆架海底沉积物中的稀土元素[J]. 沉积学报, 1990, 8(1):37-43 doi: 10.14027/j.cnki.cjxb.1990.01.005 ZHAO Yiyang, WANG Jintu, QIN Chaoyang, et al. Rare- earth elements in continental shelf sediments of the China Seas [J]. Acta Sedimentologica Sinica, 1990, 8(1): 37-43. doi: 10.14027/j.cnki.cjxb.1990.01.005 |
[28] | 蓝先洪, 申顺喜. 南黄海中部沉积岩心的稀土元素地球化学特征[J]. 海洋通报, 2002, 21(5):46-53 doi: 10.3969/j.issn.1001-6392.2002.05.007 LAN Xianhong, SHEN Shunxi. Geochemical characteristics of rare earth elements of sediment cores from the central South Yellow Sea [J]. Marine Science Bulletin, 2002, 21(5): 46-53. doi: 10.3969/j.issn.1001-6392.2002.05.007 |
[29] | 王贤觉, 陈毓蔚, 雷剑泉, 等. 东海大陆架海底沉积物稀土元素地球化学研究[J]. 地球化学, 1982, 11(1):56-65 doi: 10.3321/j.issn:0379-1726.1982.01.008 WANG Xianjue, CHEN Yuwei, LEI Jianquan, et al. REE geochemistry in sea-floor sediments in the continental shelf of East China Sea [J]. Geochimica, 1982, 11(1): 56-65. doi: 10.3321/j.issn:0379-1726.1982.01.008 |
[30] | 吴明清. 我国台湾浅滩海底沉积物稀土元素地球化学[J]. 地球化学, 1983, 30(3):303-313 doi: 10.3321/j.issn:0379-1726.1983.03.010 WU Mingqing. REE geochemistry of sea-floor sediments from the Taiwan shallow, China [J]. Geochimica, 1983, 30(3): 303-313. doi: 10.3321/j.issn:0379-1726.1983.03.010 |
[31] | 窦衍光, 李军, 李炎. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义[J]. 地球化学, 2012, 41(2):147-157 doi: 10.3969/j.issn.0379-1726.2012.02.006 DOU Yanguang, LI Jun, LI Yan. Rare earth element compositions and provenance implication of surface sediments in the eastern Beibu Gulf [J]. Geochimica, 2012, 41(2): 147-157. doi: 10.3969/j.issn.0379-1726.2012.02.006 |
[32] | 管秉贤. 黄、东海浅海水文学的主要特征[J]. 黄渤海海洋, 1985, 3(4):1-10 GUAN Bingxian. Major features of the shallow water hydrography in the East China Sea and Huanghai Sea [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1985, 3(4): 1-10. |
[33] | Wang W J, Jiang W S. Study on the seasonal variation of the suspended sediment distribution and transportation in the East China Seas based on SeaWiFS data [J]. Journal of Ocean University of China, 2008, 7(4): 385-392. doi: 10.1007/s11802-008-0385-6 |
[34] | Pang Y M, Guo X W, Han Z Z, et al. Mesozoic–Cenozoic denudation and thermal history in the Central Uplift of the South Yellow Sea Basin and the implications for hydrocarbon systems: constraints from the CSDP-2 borehole [J]. Marine and Petroleum Geology, 2019, 99: 355-369. doi: 10.1016/j.marpetgeo.2018.10.027 |
[35] | 刘健, 段宗奇, 梅西, 等. 南黄海中部隆起晚新近纪: 第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5):25-43 LIU Jian, DUAN Zongqi, MEI Xi, et al. Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea [J]. Marine Geology Quaternary Geology, 2021, 41(5): 25-43. |
[36] | 蓝先洪, 张志珣, 李日辉, 等. 南黄海NT2孔沉积物物源研究[J]. 沉积学报, 2010, 28(6):1182-1189 doi: 10.14027/j.cnki.cjxb.2010.06.006 LAN Xianhong, ZHANG Zhixun, LI Rihui, et al. Provenance study of sediments in core NT2 of the South Yellow Sea [J]. Acta Sedimentologica Sinica, 2010, 28(6): 1182-1189. doi: 10.14027/j.cnki.cjxb.2010.06.006 |
[37] | 王飞飞, 张勇, 仇建东, 等. 山东半岛南部近岸海域晚第四纪以来有孔虫和介形类化石群落分布特征及古环境演化[J]. 微体古生物学报, 2014, 31(2):130-146 WANG Feifei, ZHANG Yong, QIU Jiandong, et al. Late quaternary distribution characters of foraminifera and ostracoda in the offshore area of Southern Shandong Peninsula and paleoenvironmental evolution [J]. Acta Micropalaeontologica Sinica, 2014, 31(2): 130-146. |
[38] | Lai Z P. Testing the use of an OSL standardised growth curve (SGC) for determination on quartz from the Chinese Loess Plateau [J]. Radiation Measurements, 2006, 41(1): 9-16. doi: 10.1016/j.radmeas.2005.06.031 |
[39] | 杨子赓, 林和茂, 王圣洁, 等. 对末次间冰期南黄海古冷水团沉积的探讨[J]. 海洋地质与第四纪地质, 1998, 18(1):48-55,57-59 doi: 10.16562/j.cnki.0256-1492.1998.01.007 YANG Zigeng, LIN Hemao, WANG Shengjie, et al. A study of the ancient Cold Water Mass sediments in South Yellow Sea during Last Interglacial [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 48-55,57-59. doi: 10.16562/j.cnki.0256-1492.1998.01.007 |
[40] | 杨守业, 李从先, Lee C B, 等. 黄海周边河流的稀土元素地球化学及沉积物物源示踪[J]. 科学通报, 2003, 48(11):1135-1139 doi: 10.3321/j.issn:0023-074X.2003.11.004 YANG Shouye, LI Congxian, Lee C B, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators [J]. Chinese Science Bulletin, 2003, 48(11): 1135-1139. doi: 10.3321/j.issn:0023-074X.2003.11.004 |
[41] | Masuda A, Nakamura N, Tanaka T. Fine structures of mutually normalized rare-earth patterns of chondrites [J]. Geochimica et Cosmochimica Acta, 1973, 37(2): 239-248. doi: 10.1016/0016-7037(73)90131-2 |
[42] | Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Melbourne: Blackwell, 1985: 29-45. |
[43] | 乔淑卿, 杨作升. 长江和黄河入海沉积物不同粒级组分中稀土元素的比较[J]. 海洋地质与第四纪地质, 2007, 27(6):9-16 doi: 10.16562/j.cnki.0256-1492.2007.06.011 QIAO Shuqing, YANG Zuosheng. Comparison of rare earth element compositions in different grain-size fractions of sediments from the Yangtze and Yellow Rivers and the sea [J]. Marine Geology & Quaternary Geology, 2007, 27(6): 9-16. doi: 10.16562/j.cnki.0256-1492.2007.06.011 |
[44] | Yang S Y, Jung H S, Li C X. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments [J]. Sedimentary Geology, 2004, 164(1-2): 19-34. doi: 10.1016/j.sedgeo.2003.08.001 |
[45] | Holser W T. Evaluation of the application of rare-earth elements to paleoceanography [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1-4): 309-323. doi: 10.1016/S0031-0182(97)00069-2 |
[46] | Condie K C. Another look at rare earth elements in shales[J]. Geochimica et Cosmochimica Acta ,1991 ,55(9):2527-2531. |
[47] | 李双林, 李绍全. 黄海YA01孔沉积物稀土元素组成与源区示踪[J]. 海洋地质与第四纪地质, 2001, 21(3):51-56 doi: 10.16562/j.cnki.0256-1492.2001.03.008 LI Shuanglin, LI Shaoquan. REE composition and source tracing of sediments from core YA01 in Yellow Sea [J]. Marine Geology and Quaternary Geology, 2001, 21(3): 51-56. doi: 10.16562/j.cnki.0256-1492.2001.03.008 |
[48] | 王忠蕾, 梅西, 郑洪波, 等. 辽东湾北部JXC-1孔稀土元素组成与物源判别[J]. 第四纪研究, 2021, 41(1):28-42 doi: 10.11928/j.issn.1001-7410.2021.01.03 WANG Zhonglei, MEI Xi, ZHENG Hongbo, et al. Rare earth element compositions and provenance of sediments from core JXC-1 in the northern Liaodong Bay [J]. Quaternary Sciences, 2021, 41(1): 28-42. doi: 10.11928/j.issn.1001-7410.2021.01.03 |
[49] | 黎兵, 魏子新, 李晓, 等. 长江三角洲第四纪沉积记录与古环境响应[J]. 第四纪研究, 2011, 31(2):316-328 doi: 10.3969/j.issn.1001-7410.2011.02.14 LI Bing, WEI Zixin, LI Xiao, et al. Records from quaternary sediment and palaeo-environment in the Yangtze River delta [J]. Quaternary Sciences, 2011, 31(2): 316-328. doi: 10.3969/j.issn.1001-7410.2011.02.14 |
[50] | Mei X, Li R H, Zhang X H, et al. Evolution of the Yellow Sea warm current and the Yellow Sea cold water mass since the Middle Pleistocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 442: 48-60. doi: 10.1016/j.palaeo.2015.11.018 |
[51] | Hori K, Saito Y, Zhao Q, et al. Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to Late Pleistocene-Holocene sea-level changes [J]. Journal of Sedimentary Research, 2002, 72(6): 884-897. doi: 10.1306/052002720884 |
[52] | 黄龙, 张志珣, 耿威, 等. 闽浙沿岸东部海域表层沉积物粒度特征及其沉积环境[J]. 海洋地质与第四纪地质, 2014, 34(6):161-169 HUANG Long, ZHANG Zhixun, GENG Wei, et al. Grain size of surface sediments in the Eastern Min-Zhe Coast: an indicator of sedimentary environments [J]. Marine Geology and Quaternary Geology, 2014, 34(6): 161-169. |
[53] | Li J, Hu B Q, Wei H L, et al. Provenance variations in the Holocene deposits from the southern Yellow Sea: clay mineralogy evidence [J]. Continental Shelf Research, 2014, 90: 41-51. doi: 10.1016/j.csr.2014.05.001 |
[54] | Hu B Q, Yang Z S, Qiao S Q, et al. Holocene shifts in riverine fine-grained sediment supply to the East China Sea Distal Mud in response to climate change [J]. The Holocene, 2014, 24(10): 1253-1268. doi: 10.1177/0959683614540963 |
[55] | 黄龙, 王中波, 耿威, 等. 东海东北部海域表层沉积物黏土矿物来源及输运[J]. 地球科学, 2020, 45(7):2722-2734 HUANG Long, WANG Zhongbo, GENG Wei, et al. Sources and transport of clay minerals in surface sediments of the Northeastern East China Sea [J]. Earth Science, 2020, 45(7): 2722-2734. |
[56] | 薛春汀, 周永青, 朱雄华. 晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J]. 海洋学报, 2004, 26(1):48-61 XUE Chunting, ZHOU Yongqing, ZHU Xionghua. The Huanghe River course and delta from end of late Pleistocene to the 7th Century BC [J]. Acta Oceanologica Sinica, 2004, 26(1): 48-61. |
[57] | Saito Y, Yang Z S, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene [J]. Geomorphology, 2001, 41(2-3): 219-231. doi: 10.1016/S0169-555X(01)00118-0 |
[58] | 密蓓蓓, 张勇, 梅西, 等. 中国东部海域表层沉积物稀土元素赋存特征及物源探讨[J]. 中国地质, 2020, 47(5):1530-1541 MI Beibei, ZHANG Yong, MEI Xi, et al. The rare earth element content in surface sediments of coastal areas in eastern China’s sea areas and an analysis of material sources [J]. Geology in China, 2020, 47(5): 1530-1541. |
Location of core SYSC-1 and surrounding cores[1,20,33,35-37]
Vertical change of relevant parameters of REE and global sea level[23] in core SYSC-1. The subscript N represents the chondrite normalized value
The UCC-normalized REE distribution patterns of core SYSC-1 and major rivers in the region
Correlations between characteristic parameters of REE and gran size of core SYSC-1
Source distribution plot of (La/Yb)N and (δEu)N of core SYSC-1 sediments of different layers
Provenance determination by REE discriminant function (DF) of sediments in core SYSC-1