2022 Vol. 42, No. 5
Article Contents

ZHANG Guoliang. Origin of the Caroline Seamount Chain and an ocean drilling proposal to test the mantle plume hypothesis[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 172-177. doi: 10.16562/j.cnki.0256-1492.2022072401
Citation: ZHANG Guoliang. Origin of the Caroline Seamount Chain and an ocean drilling proposal to test the mantle plume hypothesis[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 172-177. doi: 10.16562/j.cnki.0256-1492.2022072401

Origin of the Caroline Seamount Chain and an ocean drilling proposal to test the mantle plume hypothesis

  • In addition to magmatism along the tectonic plate boundaries, magmatism also occurs in intraplate setting. Intra-oceanic plate volcanism has formed a number of oceanic plateaus and seamount chains. In the 1970s, the mantle plume hypothesis was proposed to explain the genesis of oceanic plateau and seamount chain with time propagation. The mantle plume hypothesis considers that the deep mantle-sourced material upwells and entrains surrounding mantle materials and melts in the shallow mantle to form an oceanic plateau, and then an seamount chain with time on the moving plate. However, a clear evidence for genetic relationship between an oceanic plateau and a seamount chain is lacking, and, thus, the mantle plume hypothesis has not been proved. The Caroline volcanic chain consists of the Caroline plateau to west and the Caroline seamount chain to east. This study has reviewed the proceedings on the origin of the Caroline volcanic rocks in recent years, which indicates that the Caroline seamount chain could have been formed by a young deep mantle-sourced mantle plume. Because there is lack of studies on the volcanic rocks from the broad transition region between the Caroline plateau and seamount chain, robust evidence for the whole Caroline Seamount Chain formed by a deep mantle plume is lacking. This transition region is widely covered by pelagic sediments and reef limestone, and sampling of basement volcanic rocks is difficult with routine methods. This study proposes five drilling sites in this transition region, and studies of petrology, geochemistry and chronology of the drilled volcanic rocks will help to test the mantle plume hypothesis.

  • 加载中
  • [1] Erba E, Duncan R A, Bottini C, et al. Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism[M]//Neal C R, Sager W W, Sano T, et al. The Origin, Evolution, and Environmental Impact of Oceanic Large Igneous Provinces. Geological Society of America, 2015: 271-303.

    Google Scholar

    [2] Olierook H K H, Jiang Q, Jourdan F, et al. Greater Kerguelen large igneous province reveals no role for Kerguelen mantle plume in the continental breakup of eastern Gondwana [J]. Earth and Planetary Science Letters, 2019, 511: 244-255. doi: 10.1016/j.jpgl.2019.01.037

    CrossRef Google Scholar

    [3] Stoll H M. Aptian mystery solved [J]. Nature Geoscience, 2016, 9(2): 95-96. doi: 10.1038/ngeo2634

    CrossRef Google Scholar

    [4] Stordal F, Svensen H H, Aarnes I, et al. Global temperature response to century-scale degassing from the Siberian Traps large igneous province [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 471: 96-107. doi: 10.1016/j.palaeo.2017.01.045

    CrossRef Google Scholar

    [5] Morgan W J. Convection plumes in the lower mantle [J]. Nature, 1971, 230(5288): 42-43. doi: 10.1038/230042a0

    CrossRef Google Scholar

    [6] Campbell I H, Griffiths R W, Hill R I. Melting in an Archaean mantle plume: heads it's basalts, tails it's komatiites [J]. Nature, 1989, 339(6227): 697-699. doi: 10.1038/339697a0

    CrossRef Google Scholar

    [7] Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts [J]. Earth and Planetary Science Letters, 1990, 99(1-2): 79-93. doi: 10.1016/0012-821X(90)90072-6

    CrossRef Google Scholar

    [8] Thompson R N, Gibson S A. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites [J]. Nature, 2000, 407(6803): 502-506. doi: 10.1038/35035058

    CrossRef Google Scholar

    [9] Morgan W J. Deep mantle convection plumes and plate motions [J]. AAPG Bulletin, 1972, 56(2): 203-213.

    Google Scholar

    [10] Courtillot V, Davaille A, Besse J, et al. Three distinct types of hotspots in the Earth’s mantle [J]. Earth and Planetary Science Letters, 2003, 205(3-4): 295-308. doi: 10.1016/S0012-821X(02)01048-8

    CrossRef Google Scholar

    [11] Schwindrofska A, Hoernle K, Hauff F, et al. Origin of enriched components in the South Atlantic: evidence from 40 Ma geochemical zonation of the Discovery Seamounts [J]. Earth and Planetary Science Letters, 2016, 441: 167-177. doi: 10.1016/j.jpgl.2016.02.041

    CrossRef Google Scholar

    [12] Taylor B. The single largest oceanic plateau: ontong Java–Manihiki–Hikurangi [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 372-380. doi: 10.1016/j.jpgl.2005.11.049

    CrossRef Google Scholar

    [13] Weis D, Garcia M O, Rhodes J M, et al. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume [J]. Nature Geoscience, 2011, 4(12): 831-838. doi: 10.1038/ngeo1328

    CrossRef Google Scholar

    [14] Zhang G L, Li C. Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough [J]. Scientific Reports, 2016, 6: 37561. doi: 10.1038/srep37561

    CrossRef Google Scholar

    [15] Kipf A, Hauff F, Werner R, et al. Seamounts off the West Antarctic margin: a case for non-hotspot driven intraplate volcanism [J]. Gondwana Research, 2014, 25(4): 1660-1679. doi: 10.1016/j.gr.2013.06.013

    CrossRef Google Scholar

    [16] van den Bogaard P. The origin of the Canary Island Seamount Province-New ages of old seamounts [J]. Scientific Reports, 2013, 3: 2107. doi: 10.1038/srep02107

    CrossRef Google Scholar

    [17] Zhang G L. Comparative study of magmatism in east pacific rise versus nearby seamounts: constraints on magma supply and thermal structure beneath mid-ocean ridge [J]. Acta Geologica Sinica:English Edition, 2011, 85(6): 1286-1298. doi: 10.1111/j.1755-6724.2011.00588.x

    CrossRef Google Scholar

    [18] Haxby W F, Weissel J K. Evidence for small-scale mantle convection from Seasat altimeter data [J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B3): 3507-3520. doi: 10.1029/JB091iB03p03507

    CrossRef Google Scholar

    [19] Ballmer M V, van Hunen J, Ito G, et al. Intraplate volcanism with complex age-distance patterns: a case for small-scale sublithospheric convection [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6): Q06015.

    Google Scholar

    [20] Gans K D, Wilson D S, Macdonald K C. Pacific Plate gravity lineaments: diffuse extension or thermal contraction? [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1074.

    Google Scholar

    [21] Jones T D, Davies D R, Campbell I H, et al. Do mantle plumes preserve the heterogeneous structure of their deep-mantle source? [J]. Earth and Planetary Science Letters, 2016, 434: 10-17. doi: 10.1016/j.jpgl.2015.11.016

    CrossRef Google Scholar

    [22] Niu Y L, Shi X F, Li T G, et al. Testing the mantle plume hypothesis: an IODP effort to drill into the Kamchatka-Okhotsk Sea basement [J]. Science Bulletin, 2017, 62(21): 1464-1472. doi: 10.1016/j.scib.2017.09.019

    CrossRef Google Scholar

    [23] Steinberger B, Sutherland R, O'connell R J. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow [J]. Nature, 2004, 430(6996): 167-173. doi: 10.1038/nature02660

    CrossRef Google Scholar

    [24] Duncan R A, Clague D A. Pacific plate motion recorded by linear volcanic chains[M]//Nairn A E M, Stehli F G, Uyeda S. The Ocean Basins and Margins. Boston: Springer, 1985: 89-121.

    Google Scholar

    [25] Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He [J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038

    CrossRef Google Scholar

    [26] Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau [J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566

    CrossRef Google Scholar

    [27] Wu J, Suppe J, Lu R Q, et al. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods [J]. Journal of Geophysical Research:Solid Earth, 2016, 121(6): 4670-4741. doi: 10.1002/2016JB012923

    CrossRef Google Scholar

    [28] Fryer P. Evolution of the Mariana convergent plate margin system [J]. Reviews of Geophysics, 1996, 34(1): 89-125. doi: 10.1029/95RG03476

    CrossRef Google Scholar

    [29] Kobayashi K. Origin of the Palau and Yap trench-arc systems [J]. Geophysical Journal International, 2004, 157(3): 1303-1315. doi: 10.1111/j.1365-246X.2003.02244.x

    CrossRef Google Scholar

    [30] Zhang G L, Wang S, Zhang J, et al. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume [J]. Geochimica et Cosmochimica Acta, 2020, 290: 391-407. doi: 10.1016/j.gca.2020.09.018

    CrossRef Google Scholar

    [31] Mattey D P. The minor and trace element geochemistry of volcanic rocks from Truk, Ponape and Kusaie, Eastern Caroline Islands; the evolution of a young hot spot trace across old Pacific Ocean Crust [J]. Contributions to Mineralogy and Petrology, 1982, 80(1): 1-13. doi: 10.1007/BF00376730

    CrossRef Google Scholar

    [32] Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands [J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B12): 9937-9948. doi: 10.1029/JB089iB12p09937

    CrossRef Google Scholar

    [33] French S W, Romanowicz B. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots [J]. Nature, 2015, 525(7567): 95-99. doi: 10.1038/nature14876

    CrossRef Google Scholar

    [34] Bracey D R, Andrews J E. Western Caroline Ridge: relic island arc? [J]. Marine Geophysical Researches, 1974, 2(2): 111-125.

    Google Scholar

    [35] Ridley W I, Rhodes J M, Reid A M, et al. Basalts from leg 6 of the deep-sea drilling project [J]. Journal of Petrology, 1974, 15(1): 140-159. doi: 10.1093/petrology/15.1.140

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(1610) PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint