2022 Vol. 42, No. 5
Article Contents

ZHANG Yanan, ZHONG Yi, CHEN Ting, ZHAO Debo, WANG Dunfan, GAI Congcong, JIANG Zhaoxia, JIANG Xiaodong, LIU Qingsong. Research progress of ocean drilling in the North Pacific Ocean: Paleoceanography and paleoclimate[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 16-32. doi: 10.16562/j.cnki.0256-1492.2022062501
Citation: ZHANG Yanan, ZHONG Yi, CHEN Ting, ZHAO Debo, WANG Dunfan, GAI Congcong, JIANG Zhaoxia, JIANG Xiaodong, LIU Qingsong. Research progress of ocean drilling in the North Pacific Ocean: Paleoceanography and paleoclimate[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 16-32. doi: 10.16562/j.cnki.0256-1492.2022062501

Research progress of ocean drilling in the North Pacific Ocean: Paleoceanography and paleoclimate

More Information
  • As an important part of global ocean circulation, the North Pacific Ocean plays a key role in regulating the transfer and redistribution of heat and matter between high and low latitudes, thus affecting the Earth’s climate system. Based on the ocean drilling programs over 50 years in the past, many achievements in geoscience have been made. We reviewed the progresses of paleoclimate research in the North Pacific in the following aspects: (1) the evolution of the East Asian summer monsoon and the western boundary current, as well as their contributions to the transportation of heat and water vapor between high and low latitudes in North Pacific; (2) changes in water property, distribution, and the driving mechanisms of the Pacific Deep Water and North Pacific Intermediate Water, as well as the climatic response of their interaction during glacial-interglacial cycles; (3) the response of aeolian flux to the Asian inland and its iron fertilization effect on the North Pacific productivity. Previous studies have addressed those scientific problems, uncertain issued remain controversial. We therefore proposed the key scientific issues for future research in the North Pacific Ocean, and emphasized the importance of multi-layer and multi-system perspectives for deciphering the past changes of the Earth's climate system. Finally, we suggested the ideal target areas for ocean drilling program in North Pacific in the future.

  • 加载中
  • [1] Worne S, Kender S, Swann G E A, et al. Coupled climate and subarctic Pacific nutrient upwelling over the last 850, 000 years [J]. Earth and Planetary Science Letters, 2019, 522: 87-97. doi: 10.1016/j.jpgl.2019.06.028

    CrossRef Google Scholar

    [2] Jaccard S L, Haug G H, Sigman D M, et al. Glacial/interglacial changes in subarctic north pacific stratification [J]. Science, 2005, 308(5724): 1003-1006. doi: 10.1126/science.1108696

    CrossRef Google Scholar

    [3] Takahashi K, Ravelo A, Alvarez-Zarikian C. Pliocene-Pleistocene paleoceanography and climate history of the Bering Sea[R]. Scientific Prospectus, IODP, 323, 2009: 3-4,doi: 10.2204/iodp.sp.323.2009.

    Google Scholar

    [4] Gray W R, Rae J W B, Wills R C J, et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean [J]. Nature Geoscience, 2018, 11(5): 340-344. doi: 10.1038/s41561-018-0108-6

    CrossRef Google Scholar

    [5] Paulmier A, Ruiz-Pino D. Oxygen minimum zones (OMZs) in the modern ocean [J]. Progress in Oceanography, 2009, 80(3-4): 113-128. doi: 10.1016/j.pocean.2008.08.001

    CrossRef Google Scholar

    [6] Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades [J]. Nature, 2017, 542(7641): 335-339. doi: 10.1038/nature21399

    CrossRef Google Scholar

    [7] Deutsch C, Brix H, Ito T, et al. Climate-forced variability of ocean hypoxia [J]. Science, 2011, 333(6040): 336-339. doi: 10.1126/science.1202422

    CrossRef Google Scholar

    [8] Shao Y P, Wyrwoll K H, Chappell A, et al. Dust cycle: An emerging core theme in Earth system science [J]. Aeolian Research, 2011, 2(4): 181-204. doi: 10.1016/j.aeolia.2011.02.001

    CrossRef Google Scholar

    [9] Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing[C]//Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 129-234.

    Google Scholar

    [10] Martin J H. Glacial-interglacial CO2 change: The iron hypothesis [J]. Paleoceanography, 1990, 5(1): 1-13. doi: 10.1029/PA005i001p00001

    CrossRef Google Scholar

    [11] Mitchell B G, Brody E A, Holm-Hansen O, et al. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean [J]. Limnology and Oceanography, 1991, 36(8): 1662-1677. doi: 10.4319/lo.1991.36.8.1662

    CrossRef Google Scholar

    [12] Li D W, Zheng L W, Jaccard S L, et al. Millennial-scale ocean dynamics controlled export productivity in the subtropical North Pacific [J]. Geology, 2017, 45(7): 651-654. doi: 10.1130/G38981.1

    CrossRef Google Scholar

    [13] Lam P J, Robinson L F, Blusztajn J, et al. Transient stratification as the cause of the North Pacific productivity spike during deglaciation [J]. Nature Geoscience, 2013, 6(8): 622-626. doi: 10.1038/NGEO1873

    CrossRef Google Scholar

    [14] Schlitzer R. Ocean data view[EB/OL]. 2022(2022-04-04). https://odv.awi.de.

    Google Scholar

    [15] Ogi M, Tachibana Y. Influence of the annual Arctic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge [J]. Geophysical Research Letters, 2006, 33(8): L08709. doi: 10.1029/2006GL025838

    CrossRef Google Scholar

    [16] Shcherbina A Y, Talley L D, Rudnick D L. Direct observations of North Pacific ventilation: Brine rejection in the Okhotsk Sea [J]. Science, 2003, 302(5652): 1952-1955. doi: 10.1126/science.1088692

    CrossRef Google Scholar

    [17] Emile-Geay J, Cane M A, Naik N, et al. Warren revisited: Atmospheric freshwater fluxes and "Why is no deep water formed in the North Pacific'' [J]. Journal of Geophysical Research:Oceans, 2003, 108(C6): 3178. doi: 10.1029/2001JC001058

    CrossRef Google Scholar

    [18] Wang P X, Wang B, Cheng H, et al. The global monsoon across time scales: Mechanisms and outstanding issues [J]. Earth-Science Reviews, 2017, 174: 84-121. doi: 10.1016/j.earscirev.2017.07.006

    CrossRef Google Scholar

    [19] Maher B A, Thompson R. Oxygen isotopes from Chinese caves: records not of monsoon rainfall but of circulation regime [J]. Journal of Quaternary Science, 2012, 27(6): 615-624. doi: 10.1002/jqs.2553

    CrossRef Google Scholar

    [20] Parker S E, Harrison S P, Comas-Bru L, et al. A data-model approach to interpreting speleothem oxygen isotope records from monsoon regions [J]. Climate of the Past, 2021, 17(3): 1119-1138. doi: 10.5194/cp-17-1119-2021

    CrossRef Google Scholar

    [21] Caley T, Roche D M, Renssen H. Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model [J]. Nature Communications, 2014, 5: 5371. doi: 10.1038/ncomms6371

    CrossRef Google Scholar

    [22] Liu J B, Chen J H, Zhang X J, et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records [J]. Earth-Science Reviews, 2015, 148: 194-208. doi: 10.1016/j.earscirev.2015.06.004

    CrossRef Google Scholar

    [23] Rao Z G, Jia G D, Li Y X, et al. Asynchronous evolution of the isotopic composition and amount of precipitation in north China during the Holocene revealed by a record of compound-specific carbon and hydrogen isotopes of long-chain n-alkanes from an alpine lake [J]. Earth and Planetary Science Letters, 2016, 446: 68-76. doi: 10.1016/j.jpgl.2016.04.027

    CrossRef Google Scholar

    [24] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591

    CrossRef Google Scholar

    [25] Cheng H, Zhang H W, Cai Y J, et al. Orbital-scale Asian summer monsoon variations: Paradox and exploration [J]. Science China Earth Sciences, 2021, 64(4): 529-544. doi: 10.1007/s11430-020-9720-y

    CrossRef Google Scholar

    [26] Zhang H W, Zhang X, Cai Y J, et al. A data-model comparison pinpoints Holocene spatiotemporal pattern of East Asian summer monsoon [J]. Quaternary Science Reviews, 2021, 261: 106911. doi: 10.1016/j.quascirev.2021.106911

    CrossRef Google Scholar

    [27] Beck J W, Zhou W J, Li C, et al. A 550, 000-year record of East Asian monsoon rainfall from 10Be in loess [J]. Science, 2018, 360(6391): 877-881. doi: 10.1126/science.aam5825

    CrossRef Google Scholar

    [28] Sun Y B, Kutzbach J, An Z S, et al. Astronomical and glacial forcing of East Asian summer monsoon variability [J]. Quaternary Science Reviews, 2015, 115: 132-142. doi: 10.1016/j.quascirev.2015.03.009

    CrossRef Google Scholar

    [29] Hao Q Z, Wang L, Oldfield F, et al. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability [J]. Nature, 2012, 490(7420): 393-396. doi: 10.1038/nature11493

    CrossRef Google Scholar

    [30] Clemens S C, Holbourn A, Kubota Y, et al. Precession-band variance missing from East Asian monsoon runoff [J]. Nature Communications, 2018, 9(1): 3364. doi: 10.1038/s41467-018-05814-0

    CrossRef Google Scholar

    [31] Zhao D B, Wan S M, Lu Z Y, et al. Response of heterogeneous rainfall variability in East Asia to Hadley circulation reorganization during the late Quaternary [J]. Quaternary Science Reviews, 2020, 247: 106562. doi: 10.1016/j.quascirev.2020.106562

    CrossRef Google Scholar

    [32] Igarashi Y, Oba T. Fluctuations in the East Asian monsoon over the last 144ka in the northwest Pacific based on a high-resolution pollen analysis of IMAGES core MD01-2421 [J]. Quaternary Science Reviews, 2006, 25(13-14): 1447-1459. doi: 10.1016/j.quascirev.2005.11.011

    CrossRef Google Scholar

    [33] Morley J J, Heusser L E. Role of orbital forcing in East Asian monsoon climates during the last 350 kyr: evidence from terrestrial and marine climate proxies from core RC14‐99 [J]. Paleoceanography, 1997, 12(3): 483-493. doi: 10.1029/97PA00213

    CrossRef Google Scholar

    [34] Thomas E K, Clemens S C. Prell W L, et al. Temperature and leaf wax δ2H records demonstrate seasonal and regional controls on Asian monsoon proxies [J]. Geology, 2014, 42(12): 1075-1078. doi: 10.1130/G36289.1

    CrossRef Google Scholar

    [35] Kong X H, Zhou W J, Beck J W, et al. Loess magnetic susceptibility flux: a new proxy of East Asian monsoon precipitation [J]. Journal of Asian Earth Sciences, 2020, 201: 104489. doi: 10.1016/j.jseaes.2020.104489

    CrossRef Google Scholar

    [36] Sun Y B, Wang T, Yin Q Z, et al. A review of orbital-scale monsoon variability and dynamics in East Asia during the Quaternary [J]. Quaternary Science Reviews, 2022, 288: 107593. doi: 10.1016/j.quascirev.2022.107593

    CrossRef Google Scholar

    [37] Gu Z Y, Lal D, Liu T S, et al. Five million year 10Be record in Chinese loess and red-clay: climate and weathering relationships [J]. Earth and Planetary Science Letters, 1996, 144(1-2): 273-287. doi: 10.1016/0012-821X(96)00156-2

    CrossRef Google Scholar

    [38] Sun Y B, An Z S, Clemens S C, et al. Seven million years of wind and precipitation variability on the Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 2010, 297(3-4): 525-535. doi: 10.1016/j.jpgl.2010.07.004

    CrossRef Google Scholar

    [39] Dai G W, Zhang Z S, Otterå O H, et al. A modeling study of the tripole pattern of East China precipitation over the past 425 ka [J]. Journal of Geophysical Research:Atmospheres, 2021, 126(7): e2020JD033513.

    Google Scholar

    [40] 陈大可, 连涛. 厄尔尼诺-南方涛动研究新进展[J]. 科学通报, 2020, 65(35):4001-4003 doi: 10.1360/TB-2020-1219

    CrossRef Google Scholar

    CHEN Dake, LIAN Tao. Frontier of El Niño-Southern oscillation research [J]. Chinese Science Bulletin, 2020, 65(35): 4001-4003. doi: 10.1360/TB-2020-1219

    CrossRef Google Scholar

    [41] Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308. doi: 10.1038/nature14504

    CrossRef Google Scholar

    [42] Navarra G G, Di Lorenzo E. Poleward shift and intensified variability of Kuroshio-Oyashio extension and North Pacific Transition Zone under climate change [J]. Climate Dynamics, 2021, 56(7-8): 2469-2486. doi: 10.1007/s00382-021-05677-0

    CrossRef Google Scholar

    [43] Wang L, Li T, Zhou T J. Intraseasonal SST variability and air-sea interaction over the Kuroshio Extension region during boreal summer [J]. Journal of Climate, 2012, 25(5): 1619-1634. doi: 10.1175/JCLI-D-11-00109.1

    CrossRef Google Scholar

    [44] Tittensor D P, Mora C, Jetz W, et al. Global patterns and predictors of marine biodiversity across taxa [J]. Nature, 2010, 466(7310): 1098-1101. doi: 10.1038/nature09329

    CrossRef Google Scholar

    [45] Noto M, Yasuda I. Population decline of the Japanese sardine, Sardinops melanostictus, in relation to sea surface temperature in the Kuroshio Extension [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56(6): 973-983. doi: 10.1139/f99-028

    CrossRef Google Scholar

    [46] Zhang Y, Zhang Z G, Chen D K, et al. Strengthening of the Kuroshio current by intensifying tropical cyclones [J]. Science, 2020, 368(6494): 988-993. doi: 10.1126/science.aax5758

    CrossRef Google Scholar

    [47] Wu L X, Cai W J, Zhang L P, et al. Enhanced warming over the global subtropical western boundary currents [J]. Nature Climate Change, 2012, 2(3): 161-166. doi: 10.1038/NCLIMATE1353

    CrossRef Google Scholar

    [48] Vats N, Mishra S, Singh R K, et al. Paleoceanographic changes in the East China Sea during the last~400 kyr reconstructed using planktic foraminifera [J]. Global and Planetary Change, 2020, 189: 103173. doi: 10.1016/j.gloplacha.2020.103173

    CrossRef Google Scholar

    [49] Lam A R, Leckie R M. Subtropical to temperate late Neogene to Quaternary planktic foraminiferal biostratigraphy across the Kuroshio Current Extension, Shatsky Rise, northwest Pacific Ocean [J]. PLoS One, 2020, 15(7): e0234351. doi: 10.1371/journal.pone.0234351

    CrossRef Google Scholar

    [50] Gallagher S J, Kitamura A, Iryu Y, et al. The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-proxy approach [J]. Progress in Earth and Planetary Science, 2015, 2(1): 17. doi: 10.1186/s40645-015-0045-6

    CrossRef Google Scholar

    [51] Gallagher S J, Wallace M W, Li C L, et al. Neogene history of the West Pacific Warm Pool, Kuroshio and Leeuwin currents [J]. Paleoceanography, 2009, 24(1): PA1206. doi: 10.1029/2008PA001660

    CrossRef Google Scholar

    [52] Lam A R, MacLeod K G, Schilling S H, et al. Pliocene to earliest pleistocene (5-2.5 Ma) reconstruction of the Kuroshio current extension reveals a dynamic current [J]. Paleoceanography and Paleoclimatology, 2021, 36(9): e2021PA004318. doi: 10.1029/2021PA004318

    CrossRef Google Scholar

    [53] LaRiviere J P, Ravelo A C, Crimmins A, et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing [J]. Nature, 2012, 486(7401): 97-100. doi: 10.1038/nature11200

    CrossRef Google Scholar

    [54] Venti N L, Billups K, Herbert T D. Increased sensitivity of the Plio-Pleistocene northwest Pacific to obliquity forcing [J]. Earth and Planetary Science Letters, 2013, 384: 121-131. doi: 10.1016/j.jpgl.2013.10.007

    CrossRef Google Scholar

    [55] Rakestraw N W. The oceans: Their physics, chemistry, and general biology (Sverdrup, H. U.; Johnson, Martin W.; Fleming, Richard H.) [J]. Journal of Chemical Education, 1943, 20(10): 517. doi: 10.1021/ed020p517.1

    CrossRef Google Scholar

    [56] Talley L D. An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38: S171-S190. doi: 10.1016/S0198-0149(12)80009-4

    CrossRef Google Scholar

    [57] Yasuda I, Kouketsu S, Katsumata K, et al. Influence of Okhotsk sea intermediate water on the Oyashio and North Pacific intermediate water [J]. Journal of Geophysical Research:Oceans, 2002, 107(C12): 3237. doi: 10.1029/2001JC001037

    CrossRef Google Scholar

    [58] You Y Z, Suginohara N, Fukasawa M, et al. Roles of the Okhotsk sea and gulf of alaska in forming the north pacific intermediate water [J]. Journal of Geophysical Research:Oceans, 2000, 105(C2): 3253-3280. doi: 10.1029/1999JC900304

    CrossRef Google Scholar

    [59] You Y Z. Implications of cabbeling on the formation and transformation mechanism of North Pacific Intermediate Water [J]. Journal of Geophysical Research:Oceans, 2003, 108(C5): 3134. doi: 10.1029/2001JC001285

    CrossRef Google Scholar

    [60] Talley L D. Distribution and formation of North Pacific intermediate water [J]. Journal of Physical Oceanography, 1993, 23(3): 517-537. doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2

    CrossRef Google Scholar

    [61] Sigman D M, Jaccard S L, Haug G H. Polar ocean stratification in a cold climate [J]. Nature, 2004, 428(6978): 59-63. doi: 10.1038/nature02357

    CrossRef Google Scholar

    [62] Haug G H, Sigman D M. Polar twins [J]. Nature Geoscience, 2009, 2(2): 91-92. doi: 10.1038/ngeo423

    CrossRef Google Scholar

    [63] Studer A S, Martínez-Garcia A, Jaccard S L, et al. Enhanced stratification and seasonality in the Subarctic Pacific upon Northern Hemisphere Glaciation-New evidence from diatom-bound nitrogen isotopes, alkenones and archaeal tetraethers [J]. Earth and Planetary Science Letters, 2012, 351-352: 84-94. doi: 10.1016/j.jpgl.2012.07.029

    CrossRef Google Scholar

    [64] Burls N J, Fedorov A V, Sigman D M, et al. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene [J]. Science Advances, 2017, 3(9): e1700156. doi: 10.1126/sciadv.1700156

    CrossRef Google Scholar

    [65] Kender S, Ravelo A C, Worne S, et al. Closure of the Bering strait caused Mid-Pleistocene transition cooling [J]. Nature Communications, 2018, 9(1): 5386. doi: 10.1038/s41467-018-07828-0

    CrossRef Google Scholar

    [66] Cook M S, Ravelo A C, Mix A, et al. Tracing subarctic Pacific water masses with benthic foraminiferal stable isotopes during the LGM and late Pleistocene [J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2016, 125-126: 84-95. doi: 10.1016/j.dsr2.2016.02.006

    CrossRef Google Scholar

    [67] Sagawa T, Ikehara K. Intermediate water ventilation change in the subarctic northwest Pacific during the last deglaciation [J]. Geophysical Research Letters, 2008, 35(24): L24702. doi: 10.1029/2008GL035133

    CrossRef Google Scholar

    [68] Matsumoto K, Oba T, Lynch-Stieglitz J, et al. Interior hydrography and circulation of the glacial Pacific Ocean [J]. Quaternary Science Reviews, 2002, 21(14-15): 1693-1704. doi: 10.1016/s0277-3791(01)00142-1

    CrossRef Google Scholar

    [69] Keigwin L D. Glacial-age hydrography of the far northwest Pacific Ocean [J]. Paleoceanography, 1998, 13(4): 323-339. doi: 10.1029/98PA00874

    CrossRef Google Scholar

    [70] Keigwin L D. Late Pleistocene-Holocene paleoceanography and ventilation of the Gulf of California [J]. Journal of Oceanography, 2002, 58(2): 421-432. doi: 10.1023/A:1015830313175

    CrossRef Google Scholar

    [71] Ohkushi K, Itaki T, Nemoto N. Last Glacial-Holocene change in intermediate-water ventilation in the Northwestern Pacific [J]. Quaternary Science Reviews, 2003, 22(14): 1477-1484. doi: 10.1016/S0277-3791(03)00082-9

    CrossRef Google Scholar

    [72] Max L, Rippert N, Lembke-Jene L, et al. Evidence for enhanced convection of North Pacific Intermediate Water to the low-latitude Pacific under glacial conditions [J]. Paleoceanography, 2017, 32(1): 41-55. doi: 10.1002/2016PA002994

    CrossRef Google Scholar

    [73] Jang K, Huh Y, Han Y. Authigenic Nd isotope record of North Pacific Intermediate Water formation and boundary exchange on the Bering Slope [J]. Quaternary Science Reviews, 2017, 156: 150-163. doi: 10.1016/j.quascirev.2016.11.032

    CrossRef Google Scholar

    [74] Knudson K P, Ravelo A C. North Pacific intermediate water circulation enhanced by the closure of the Bering Strait [J]. Paleoceanography, 2015, 30(10): 1287-1304. doi: 10.1002/2015PA002840

    CrossRef Google Scholar

    [75] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003. doi: 10.1029/2004PA001071

    CrossRef Google Scholar

    [76] Bereiter B, Lüthi D, Siegrist M, et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25): 9755-9760. doi: 10.1073/pnas.1204069109

    CrossRef Google Scholar

    [77] Rohling E J, Grant K, Bolshaw M, et al. Antarctic temperature and global sea level closely coupled over the past five glacial cycles [J]. Nature Geoscience, 2009, 2(7): 500-504. doi: 10.1038/ngeo557

    CrossRef Google Scholar

    [78] Sosdian S, Rosenthal Y. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions [J]. Science, 2009, 325(5938): 306-310. doi: 10.1126/science.1169938

    CrossRef Google Scholar

    [79] Horikawa K, Kozaka Y, Okazaki Y, et al. Neodymium isotope records from the Northwestern Pacific: Implication for deepwater ventilation at Heinrich Stadial 1 [J]. Paleoceanography and Paleoclimatology, 2021, 36(10): e2021PA004312. doi: 10.1029/2021PA004312

    CrossRef Google Scholar

    [80] Okazaki Y, Timmermann A, Menviel L, et al. Deepwater formation in the North Pacific during the Last Glacial termination [J]. Science, 2010, 329(5988): 200-204. doi: 10.1126/science.1190612

    CrossRef Google Scholar

    [81] Kim S, Khim B K, Ikehara K, et al. Millennial-scale changes of surface and bottom water conditions in the northwestern Pacific during the last deglaciation [J]. Global and Planetary Change, 2017, 154: 33-43. doi: 10.1016/j.gloplacha.2017.04.009

    CrossRef Google Scholar

    [82] Detlef H, Sosdian S M, Belt S T, et al. Late quaternary sea-ice and sedimentary redox conditions in the eastern Bering Sea-implications for ventilation of the mid-depth North Pacific and an Atlantic-Pacific seesaw mechanism [J]. Quaternary Science Reviews, 2020, 248: 106549. doi: 10.1016/j.quascirev.2020.106549

    CrossRef Google Scholar

    [83] Rae J W B, Sarnthein M, Foster G L, et al. Deep water formation in the North Pacific and deglacial CO2 rise [J]. Paleoceanography, 2014, 29(6): 645-667. doi: 10.1002/2013PA002570

    CrossRef Google Scholar

    [84] Du J H, Haley B A, Mix A C, et al. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations [J]. Nature Geoscience, 2018, 11(10): 749-755. doi: 10.1038/s41561-018-0205-6

    CrossRef Google Scholar

    [85] Max L, Lembke-Jene L, Riethdorf J R, et al. Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation [J]. Climate of the Past, 2014, 10(2): 591-605. doi: 10.5194/cp-10-591-2014

    CrossRef Google Scholar

    [86] Jaccard S L, Galbraith E D. Direct ventilation of the North Pacific did not reach the deep ocean during the last deglaciation [J]. Geophysical Research Letters, 2013, 40(1): 199-203. doi: 10.1029/2012GL054118

    CrossRef Google Scholar

    [87] Ohkushi K, Hara N, Ikehara M, et al. Intensification of North Pacific intermediate water ventilation during the Younger Dryas [J]. Geo-Marine Letters, 2016, 36(5): 353-360. doi: 10.1007/s00367-016-0450-x

    CrossRef Google Scholar

    [88] Gong X, Lembke-Jene L, Lohmann G, et al. Enhanced North Pacific deep-ocean stratification by stronger intermediate water formation during Heinrich Stadial 1 [J]. Nature Communications, 2019, 10(1): 656. doi: 10.1038/s41467-019-08606-2

    CrossRef Google Scholar

    [89] Talley L D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports [J]. Oceanography, 2013, 26(1): 80-97. doi: 10.5670/oceanog.2013.07

    CrossRef Google Scholar

    [90] Houghton R A. Balancing the global carbon budget [J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 313-347. doi: 10.1146/annurev.earth.35.031306.140057

    CrossRef Google Scholar

    [91] Zeebe R E. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification [J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 141-165. doi: 10.1146/annurev-earth-042711-105521

    CrossRef Google Scholar

    [92] Jacobel A W, Anderson R F, Jaccard S L, et al. Deep Pacific storage of respired carbon during the last ice age: perspectives from bottom water oxygen reconstructions [J]. Quaternary Science Reviews, 2020, 230: 106065. doi: 10.1016/j.quascirev.2019.106065

    CrossRef Google Scholar

    [93] Jaccard S L, Galbraith E D, Sigman D M, et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool [J]. Earth and Planetary Science Letters, 2009, 277(1-2): 156-165. doi: 10.1016/j.jpgl.2008.10.017

    CrossRef Google Scholar

    [94] Hu R, Piotrowski A M. Neodymium isotope evidence for glacial-interglacial variability of deepwater transit time in the Pacific Ocean [J]. Nature Communications, 2018, 9(1): 4709. doi: 10.1038/s41467-018-07079-z

    CrossRef Google Scholar

    [95] Wan S, Jian Z M, Gong X, et al. Deep water[CO32−] and circulation in the south China sea over the last glacial cycle [J]. Quaternary Science Reviews, 2020, 243: 106499. doi: 10.1016/j.quascirev.2020.106499

    CrossRef Google Scholar

    [96] de la Fuente M, Skinner L, Calvo E, et al. Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific [J]. Nature Communications, 2015, 6: 7420. doi: 10.1038/ncomms8420

    CrossRef Google Scholar

    [97] Skinner L C, Primeau F, Freeman E, et al. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2 [J]. Nature Communications, 2017, 8: 16010. doi: 10.1038/ncomms16010

    CrossRef Google Scholar

    [98] Yu J M, Anderson R F, Jin Z D, et al. Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial-interglacial cycle [J]. Quaternary Science Reviews, 2013, 76: 39-52. doi: 10.1016/j.quascirev.2013.06.020

    CrossRef Google Scholar

    [99] Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation [J]. Nature Geoscience, 2012, 5(2): 151-156. doi: 10.1038/ngeo1352

    CrossRef Google Scholar

    [100] Lund D C. Deep Pacific ventilation ages during the last deglaciation: Evaluating the influence of diffusive mixing and source region reservoir age [J]. Earth and Planetary Science Letters, 2013, 381: 52-62. doi: 10.1016/j.jpgl.2013.08.032

    CrossRef Google Scholar

    [101] Lund D C, Mix A C, Southon J. Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation [J]. Nature Geoscience, 2011, 4(11): 771-774. doi: 10.1038/ngeo1272

    CrossRef Google Scholar

    [102] Janecek T R, Rea D K. Eolian deposition in the northeast Pacific Ocean: Cenozoic history of atmospheric circulation [J]. Geological Society of America Bulletin, 1983, 94(6): 730-738. doi: 10.1130/0016-7606(1983)94<730:EDITNP>2.0.CO;2

    CrossRef Google Scholar

    [103] Janecek T R. Eolian sedimentation in the northwest Pacific Ocean: A preliminary examination of the data from Deep Sea Drilling Project sites 576 and 578[R]. Initial Reports, DSDP, 86, 1985: 589-603. doi: 10.2973/dsdp.proc.86.126.1985.

    Google Scholar

    [104] Anderson C H, Murray R W, Dunlea A G, et al. Aeolian delivery to Ulleung Basin, Korea (Japan Sea), during development of the East Asian Monsoon through the last 12 Ma [J]. Geological Magazine, 2020, 157(5): 806-817. doi: 10.1017/S001675681900013X

    CrossRef Google Scholar

    [105] Zhang W F, Chen J, Ji J F, et al. Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene [J]. Aeolian Research, 2016, 23: 11-20. doi: 10.1016/j.aeolia.2016.09.004

    CrossRef Google Scholar

    [106] Rea D K, Snoeckx H, Joseph L H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere [J]. Paleoceanography, 1998, 13(3): 215-224. doi: 10.1029/98PA00123

    CrossRef Google Scholar

    [107] Jiang X D, Zhao X, Zhao X Y, et al. Abyssal manganese nodule recording of global cooling and Tibetan Plateau uplift impacts on Asian aridification [J]. Geophysical Research Letters, 2022, 49(3): e2021GL096624. doi: 10.1029/2021GL096624

    CrossRef Google Scholar

    [108] Zhang Q, Liu Q S, Roberts A P, et al. Mechanism for enhanced eolian dust flux recorded in North Pacific Ocean sediments since 4.0 Ma: aridity or humidity at dust source areas in the Asian interior? [J]. Geology, 2020, 48(1): 77-81. doi: 10.1130/G46862.1

    CrossRef Google Scholar

    [109] Shi Z G, Liu X D, An Z S, et al. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change [J]. Climate Dynamics, 2011, 37(11-12): 2289-2301. doi: 10.1007/s00382-011-1078-1

    CrossRef Google Scholar

    [110] Abell J T, Winckler G, Anderson R F, et al. Poleward and weakened westerlies during Pliocene warmth [J]. Nature, 2021, 589(7840): 70-75. doi: 10.1038/s41586-020-03062-1

    CrossRef Google Scholar

    [111] Serno S, Winckler G, Anderson R F, et al. Change in dust seasonality as the primary driver for orbital-scale dust storm variability in East Asia [J]. Geophysical Research Letters, 2017, 44(8): 3796-3805. doi: 10.1002/2016GL072345

    CrossRef Google Scholar

    [112] Zhang W F, Li G J, Chen J. The application of Neodymium isotope as a chronostratigraphic tool in North Pacific sediments [J]. Geological Magazine, 2020, 157(5): 768-776. doi: 10.1017/S001675681900089X

    CrossRef Google Scholar

    [113] McGee D, Broecker W S, Winckler G. Gustiness: the driver of glacial dustiness? [J]. Quaternary Science Reviews, 2010, 29(17-18): 2340-2350. doi: 10.1016/j.quascirev.2010.06.009

    CrossRef Google Scholar

    [114] Nagashima K, Tada R, Tani A, et al. Millennial-scale oscillations of the westerly jet path during the last glacial period [J]. Journal of Asian Earth Sciences, 2011, 40(6): 1214-1220. doi: 10.1016/j.jseaes.2010.08.010

    CrossRef Google Scholar

    [115] Luetscher M, Boch R, Sodemann H, et al. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems [J]. Nature Communications, 2015, 6: 6344. doi: 10.1038/ncomms7344

    CrossRef Google Scholar

    [116] Vandenberghe J, Renssen H, van Huissteden K, et al. Penetration of Atlantic westerly winds into Central and East Asia [J]. Quaternary Science Reviews, 2006, 25(17-18): 2380-2389. doi: 10.1016/j.quascirev.2006.02.017

    CrossRef Google Scholar

    [117] Broecker W S. Glacial to interglacial changes in ocean chemistry [J]. Progress in Oceanography, 1982, 11(2): 151-197. doi: 10.1016/0079-6611(82)90007-6

    CrossRef Google Scholar

    [118] Broecker W S. Ocean chemistry during glacial time [J]. Geochimica et Cosmochimica Acta, 1982, 46(10): 1689-1705. doi: 10.1016/0016-7037(82)90110-7

    CrossRef Google Scholar

    [119] Harada N, Sato M, Shiraishi A, et al. Characteristics of alkenone distributions in suspended and sinking particles in the northwestern North Pacific [J]. Geochimica et Cosmochimica Acta, 2006, 70(8): 2045-2062. doi: 10.1016/j.gca.2006.01.024

    CrossRef Google Scholar

    [120] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans [J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2009, 56(8-10): 554-577. doi: 10.1016/j.dsr2.2008.12.009

    CrossRef Google Scholar

    [121] Rae J W B, Gray W R, Wills R C J, et al. Overturning circulation, nutrient limitation, and warming in the Glacial North Pacific [J]. Science Advances, 2020, 6(50): eabd1654. doi: 10.1126/sciadv.abd1654

    CrossRef Google Scholar

    [122] Haug G H, Sigman D M, Tiedemann R, et al. Onset of permanent stratification in the subarctic Pacific Ocean [J]. Nature, 1999, 401(6755): 779-782. doi: 10.1038/44550

    CrossRef Google Scholar

    [123] Snoeckx H D, Rea D K, Jones C E, et al. Aeolian and silica deposition in the central North Pacific: Results from sites 885/886 [R]. Scientific Results, ODP, 145, 1995: 219-230, doi: 10.2973/odp.proc.sr.145.123.1995.

    Google Scholar

    [124] Iwasaki S, Takahashi K, Kanematsu Y, et al. Paleoproductivity and paleoceanography of the last 4.3 Myrs at IODP Expedition 323 Site U1341 in the Bering Sea based on biogenic opal content [J]. Deep Sea Research Part Ⅱ:Tropical Studies in Oceanography, 2016, 125-126: 145-154. doi: 10.1016/j.dsr2.2015.04.005

    CrossRef Google Scholar

    [125] Stroynowski Z, Ravelo A C, Andreasen D. A Pliocene to recent history of the Bering Sea at Site U1340A, IODP Expedition 323 [J]. Paleoceanography, 2015, 30(12): 1641-1656. doi: 10.1002/2015PA002866

    CrossRef Google Scholar

    [126] Jaccard S L, Galbraith E D, Sigman D M, et al. A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800 kyrs [J]. Quaternary Science Reviews, 2010, 29(1-2): 206-212. doi: 10.1016/j.quascirev.2009.10.007

    CrossRef Google Scholar

    [127] Knudson K P, Ravelo A C. Enhanced subarctic Pacific stratification and nutrient utilization during glacials over the last 1.2Myr [J]. Geophysical Research Letters, 2015, 42(22): 9870-9879. doi: 10.1002/2015GL066317

    CrossRef Google Scholar

    [128] Maeda L, Kawahata H, Nohara M. Fluctuation of biogenic and abiogenic sedimentation on the Shatsky Rise in the western north Pacific during the late Quaternary [J]. Marine Geology, 2002, 189(3-4): 197-214. doi: 10.1016/S0025-3227(02)00405-X

    CrossRef Google Scholar

    [129] Amo M, Minagawa M. Sedimentary record of marine and terrigenous organic matter delivery to the Shatsky Rise, western North Pacific, over the last 130 kyr [J]. Organic Geochemistry, 2003, 34(9): 1299-1312. doi: 10.1016/S0146-6380(03)00113-X

    CrossRef Google Scholar

    [130] Burgay F, Spolaor A, Gabrieli J, et al. Atmospheric iron supply and marine productivity in the glacial North Pacific Ocean [J]. Climate of the Past, 2021, 17(1): 491-505. doi: 10.5194/cp-17-491-2021

    CrossRef Google Scholar

    [131] Moore C M, Mills M M, Arrigo K R, et al. Processes and patterns of oceanic nutrient limitation [J]. Nature Geoscience, 2013, 6(9): 701-710. doi: 10.1038/ngeo1765

    CrossRef Google Scholar

    [132] Knudson K P, Ravelo A C, Aiello I W, et al. Causes and timing of recurring subarctic Pacific hypoxia [J]. Science Advances, 2021, 7(23): eabg2906. doi: 10.1126/sciadv.abg2906

    CrossRef Google Scholar

    [133] Han Y X, Zhao T L, Song L C, et al. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean [J]. Atmospheric Environment, 2011, 45(25): 4291-4298. doi: 10.1016/j.atmosenv.2011.04.078

    CrossRef Google Scholar

    [134] Müller J, Romero O, Cowan E A, et al. Cordilleran ice-sheet growth fueled primary productivity in the Gulf of Alaska, northeast Pacific Ocean [J]. Geology, 2018, 46(4): 307-310. doi: 10.1130/g39904.1

    CrossRef Google Scholar

    [135] Kim S, Takahashi K, Khim B K, et al. Biogenic opal production changes during the Mid-Pleistocene Transition in the Bering Sea (IODP Expedition 323 Site U1343) [J]. Quaternary Research, 2014, 81(1): 151-157. doi: 10.1016/j.yqres.2013.10.001

    CrossRef Google Scholar

    [136] Jaccard S L, Hayes C T, Martínez-García A, et al. Two modes of change in southern ocean productivity over the past million years [J]. Science, 2013, 339(6126): 1419-1423. doi: 10.1126/science.1227545

    CrossRef Google Scholar

    [137] Weber M E, Bailey I, Hemming S R, et al. Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years [J]. Nature Communications, 2022, 13(1): 2044. doi: 10.1038/s41467-022-29642-5

    CrossRef Google Scholar

    [138] Koffman B G, Yoder M F, Methven T, et al. Glacial dust surpasses both volcanic ash and desert dust in its iron fertilization potential [J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006821. doi: 10.1029/2020GB006821

    CrossRef Google Scholar

    [139] Walczak M H, Mix A C, Cowan E A, et al. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans [J]. Science, 2020, 370(6517): 716-720. doi: 10.1126/science.aba7096

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(1477) PDF downloads(19) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint