2022 Vol. 42, No. 5
Article Contents

WANG Zhonglei, LU Kai, SUN Jun, ZHANG Yong, ZHU Xiaoqing, HU Gang, HE Mengying, HUANG Xiangtong, MI Beibei. Detrital zircon U-Pb age and provenance discrimination in sediments of the central mud area in the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 70-82. doi: 10.16562/j.cnki.0256-1492.2022062402
Citation: WANG Zhonglei, LU Kai, SUN Jun, ZHANG Yong, ZHU Xiaoqing, HU Gang, HE Mengying, HUANG Xiangtong, MI Beibei. Detrital zircon U-Pb age and provenance discrimination in sediments of the central mud area in the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 70-82. doi: 10.16562/j.cnki.0256-1492.2022062402

Detrital zircon U-Pb age and provenance discrimination in sediments of the central mud area in the South Yellow Sea

More Information
  • Detrital zircons taken from four surface sediments and five sediment samples from SYS90-1A borehole in the southern part of the central mud area of the South Yellow Sea was U-Pb dated and their provenances were discriminated, based on which the changes since about 1.0 Ma in the provenance of the sediment samples were analyzed. Results show that the sediments in the mud area are mainly from the Yellow River, and the sediments in the south of the mud area may be transported by the Yangtze River. The borehole SYS90-1A mainly records the deposits since the late Early Pleistocene, showing obvious provenance differences in different stages. In the early Middle Pleistocene, the sediments were mainly transported from the Yangtze River; and cyclic stratigraphy that was determined based on magnetic susceptibility and astronomical chronology tuning showed that the specific time of the stage is 590~710 ka. From the late early Pleistocene to the middle Pleistocene and since the middle Pleistocene, the sediments were mainly from the Yellow River. This result is different from the previous understanding that the sediments in the South Yellow Sea since the Early Pleistocene were mainly derived from the Yellow River, and the contribution of the sediments from the Yangtze River to the mud area needs to be re-recognized. The detrital zircon U-Pb age distribution of all samples is completely different from that of the fluvial sediments of the Korean Peninsula, indicating that the sediments in this area are mainly from mainland China since the late Early Pleistocene.

  • 加载中
  • [1] 石学法, 乔淑卿, 杨守业, 等. 亚洲大陆边缘沉积学研究进展(2011-2020)[J]. 矿物岩石地球化学通报, 2021, 40(2):319-336

    Google Scholar

    SHI Xuefa, QIAO Shuqing, YANG Shouye, et al. Progress in sedimentology research of the Asian continental margin (2011-2020) [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 319-336.

    Google Scholar

    [2] 杨守业. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展, 2006, 21(6):648-655 doi: 10.3321/j.issn:1001-8166.2006.06.013

    CrossRef Google Scholar

    YANG Shouye. Advances in sedimentary geochemistry and tracing applications of Asian rivers [J]. Advances in Earth Science, 2006, 21(6): 648-655. doi: 10.3321/j.issn:1001-8166.2006.06.013

    CrossRef Google Scholar

    [3] 汪品先, 翦知湣. 探索南海深部的回顾与展望[J]. 中国科学:地球科学, 2019, 62(10):1473-1488 doi: 10.1007/s11430-019-9484-4

    CrossRef Google Scholar

    WANG Pinxian, JIAN Zhimin. Exploring the deep South China Sea: retrospects and prospects [J]. Science China Earth Sciences, 2019, 62(10): 1473-1488. doi: 10.1007/s11430-019-9484-4

    CrossRef Google Scholar

    [4] Shackleton N J, Hall M A, Pate D. Pliocene stable isotope stratigraphy of site 846 [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 138: 337-355.

    Google Scholar

    [5] Mix A C, Le J, Shackleton N J. Benthic foraminiferal stable isotope stratigraphy of Site 846: 0-1.8 Ma [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 138: 839-856.

    Google Scholar

    [6] 张勇, 姚永坚, 李学杰, 等. 中生代以来东亚洋陆汇聚带多圈层动力下的中国海及邻区构造演化及资源环境效应[J]. 中国地质, 2020, 47(5):1271-1309

    Google Scholar

    ZHANG Yong, YAO Yongjian, LI Xuejie, et al. Tectonic evolution and resource-environmental effect of China Seas and adjacent areas under the multisphere geodynamic system of the East Asia ocean-continent convergent belt since Mesozoic [J]. Geology in China, 2020, 47(5): 1271-1309.

    Google Scholar

    [7] Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea [J]. Earth-Science Reviews, 2003, 63(l-2): 93-120.

    Google Scholar

    [8] 刘健, 李绍全, 王圣洁, 等. 末次冰消期以来黄海海平面变化与黄海暖流的形成[J]. 海洋地质与第四纪地质, 1999, 19(1):13-24 doi: 10.16562/j.cnki.0256-1492.1999.01.003

    CrossRef Google Scholar

    LIU Jian, LI Shaoquan, WANG Shengjie, et al. Sea level changes of the Yellow Sea and formation of the Yellow Sea Warm Current since the last deglaciation [J]. Marine Geology & Quaternary Geology, 1999, 19(1): 13-24. doi: 10.16562/j.cnki.0256-1492.1999.01.003

    CrossRef Google Scholar

    [9] 刘健, 段宗奇, 梅西, 等. 南黄海中部隆起晚新近纪-第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5):25-43

    Google Scholar

    LIU Jian, DUAN Zongqi, MEI Xi, et al. Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 25-43.

    Google Scholar

    [10] 卢健, 李安春. 南黄海表层沉积物粒度特征季节变化及其影响因素[J]. 海洋科学, 2015, 39(3):48-58 doi: 10.11759/hykx20140527001

    CrossRef Google Scholar

    LU Jian, LI Anchun. Seasonal variations and influencing factors of the grain size characteristics of surface sediments in the South Yellow Sea [J]. Marine Sciences, 2015, 39(3): 48-58. doi: 10.11759/hykx20140527001

    CrossRef Google Scholar

    [11] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989: 1-289

    Google Scholar

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the Yellow Sea[M]. Beijing: Oceanic Publish House, 1989: 1-289.

    Google Scholar

    [12] 魏建伟, 石学法, 辛春英, 等. 南黄海黏土矿物分布特征及其指示意义[J]. 科学通报, 2003, 48(1):7-11

    Google Scholar

    WEI Jianwei, SHI Xuefa, XIN Chunying, et al. Clay mineral distributions in the southern Yellow Sea and their significance [J]. Chinese Science Bulletin, 2003, 48(1): 7-11.

    Google Scholar

    [13] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011.

    Google Scholar

    [14] Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea [J]. Marine Geology, 2017, 390: 270-281. doi: 10.1016/j.margeo.2017.06.004

    CrossRef Google Scholar

    [15] Yao Z Q, Shi X F, Qiao S Q, et al. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~ 880 ka ago [J]. Scientific Reports, 2017, 7(1): 2827. doi: 10.1038/s41598-017-03140-x

    CrossRef Google Scholar

    [16] 何梦颖, 梅西, 张训华, 等. 南黄海陆架区CSDP-1孔沉积物碎屑锆石U-Pb年龄物源判别[J]. 吉林大学学报:地球科学版, 2019, 49(1):85-95

    Google Scholar

    HE Mengying, MEI Xi, ZHANG Xunhua, et al. Provenance discrimination of detrital zircon U-Pb dating in the core CSDP-l in the continental shelf of South Yellow Sea [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 85-95.

    Google Scholar

    [17] Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau [J]. Quaternary Science Reviews, 2013, 78: 355-368. doi: 10.1016/j.quascirev.2012.11.032

    CrossRef Google Scholar

    [18] Vermeesch P, Garzanti E. Making geological sense of 'Big Data' in sedimentary provenance analysis [J]. Chemical Geology, 2015, 409: 20-27. doi: 10.1016/j.chemgeo.2015.05.004

    CrossRef Google Scholar

    [19] Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record [J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303. doi: 10.2113/0530277

    CrossRef Google Scholar

    [20] Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017. doi: 10.1029/2007GC001805

    CrossRef Google Scholar

    [21] Shaulis B, Lapen T J, Toms A. Signal linearity of an extended range pulse counting detector: applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(11): Q0AA11. doi: 10.1029/2010GC003198

    CrossRef Google Scholar

    [22] 许东禹, 刘锡清, 张训华, 等. 中国近海地质[M]. 北京: 地质出版社, 1997: 1-80

    Google Scholar

    XU Dongyu, LIU Xiqing, ZHANG Xunhua, et al. China Offshore Geology[M]. Beijing: Geological Publishing House, 1997: 1-80.

    Google Scholar

    [23] 刘忠臣, 刘保华, 黄振宗, 等. 中国近海及邻近海域地形地貌[M]. 北京: 海洋出版社, 2005: 1-96

    Google Scholar

    LIU Zhongchen, LIU Baohua, HUANG Zhenzong, et al. Topography and Geomorphology of China's Offshore and Adjacent Areas[M]. Beijing: Oceanic Publish House, 2005: 1-96.

    Google Scholar

    [24] 苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报, 2001, 23(3):1-16

    Google Scholar

    SU Jilan. A review of circulation dynamics of the coastal oceans near China [J]. Acta Oceanologica Sinica, 2001, 23(3): 1-16.

    Google Scholar

    [25] 梅西, 李学杰, 密蓓蓓, 等. 中国海域表层沉积物分布规律及沉积分异模式[J]. 中国地质, 2020, 47(5):1447-1462

    Google Scholar

    MEI Xi, LI Xuejie, MI Beibei, et al. Distribution regularity and sedimentary differentiation patterns of China seas surface sediments [J]. Geology in China, 2020, 47(5): 1447-1462.

    Google Scholar

    [26] 梅西, 张训华, 刘健, 等. 南黄海3.50Ma以来海陆环境演变的元素地球化学记录[J]. 吉林大学学报:地球科学版, 2019, 49(1):74-84

    Google Scholar

    MEI Xi, ZHANG Xunhua, LIU Jian, et al. Elemental geochemical record of land and sea environmental evolution since 3.50 Ma in South Yellow Sea [J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1): 74-84.

    Google Scholar

    [27] 任纪舜. 新一代中国大地构造图: 中国及邻区大地构造图(1: 5000000)附简要说明: 从全球看中国大地构造[J]. 地球学报, 2003, 24(1):1-2 doi: 10.3321/j.issn:1006-3021.2003.01.001

    CrossRef Google Scholar

    REN Jishun. The new generation geotectonic map of China-geotectonic map of China and adjacent areas (1: 5000000) a brief description: Chinese geotectonics in a global view [J]. Acta Geoscientia Sinica, 2003, 24(1): 1-2. doi: 10.3321/j.issn:1006-3021.2003.01.001

    CrossRef Google Scholar

    [28] Shao L, Li C A, Yuan S Y, et al. Neodymium isotopic variations of the late Cenozoic sediments in the Jianghan Basin: implications for sediment source and evolution of the Yangtze River [J]. Journal of Asian Earth Sciences, 2012, 45: 57-64. doi: 10.1016/j.jseaes.2011.09.018

    CrossRef Google Scholar

    [29] 何梦颖, 郑洪波, 贾军涛. 长江现代沉积物碎屑锆石U-Pb年龄及Hf同位素组成与物源示踪研究[J]. 第四纪研究, 2013, 33(4):656-670 doi: 10.3969/j.issn.1001-7410.2013.04.04

    CrossRef Google Scholar

    HE Mengying, ZHENG Hongbo, JIA Juntao. Detrital zircon U-Pb dating and Hf isotope of modern sediments in the Yangtze River: implications for the sediment provenance [J]. Quaternary Sciences, 2013, 33(4): 656-670. doi: 10.3969/j.issn.1001-7410.2013.04.04

    CrossRef Google Scholar

    [30] 许志琴, 侯立玮, 王宗秀, 等. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992

    Google Scholar

    XU Zhiqin, HOU Liwei, WANG Zongxiu, et al. Orogenic Processes of the Songpan Ganze Orogenic Belt of China[M]. Beijing: Geological Publishing House, 1992.

    Google Scholar

    [31] 岳保静, 廖晶. 黄河流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质, 2016, 36(5):109-119 doi: 10.16562/j.cnki.0256-1492.2016.05.011

    CrossRef Google Scholar

    YUE Baojing, LIAO Jing. Provenance study of Yellow River sediments by U-Pb dating of the detrital zircons [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 109-119. doi: 10.16562/j.cnki.0256-1492.2016.05.011

    CrossRef Google Scholar

    [32] 林旭, 刘静, 吴中海, 等. 环渤海湾盆地主要河流碎屑锆石U-Pb年龄特征及其物源示踪意义[J]. 海洋地质与第四纪地质, 2021, 41(2):136-145 doi: 10.16562/j.cnki.0256-1492.2020062201

    CrossRef Google Scholar

    LIN Xu, LIU Jing, WU Zhonghai, et al. U-Pb age characteristics of major fluvial detrital zircons in the Bohai Bay Basin and their provenance implications [J]. Marine Geology & Quaternary Geology, 2021, 41(2): 136-145. doi: 10.16562/j.cnki.0256-1492.2020062201

    CrossRef Google Scholar

    [33] Choi T, Lee Y I, Orihashi Y, et al. The provenance of the southeastern Yellow Sea sediments constrained by detrital zircon U-Pb age [J]. Marine Geology, 2013, 337: 182-194. doi: 10.1016/j.margeo.2013.01.007

    CrossRef Google Scholar

    [34] Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975

    CrossRef Google Scholar

    [35] Paton C, Woodhead J D, Hellstrom J C, et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q0AA06.

    Google Scholar

    [36] Thompson J M, Meffre S, Danyushevsky L. Impact of air, laser pulse width and fluence on U-Pb dating of zircons by LA-ICPMS [J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 221-230. doi: 10.1039/C7JA00357A

    CrossRef Google Scholar

    [37] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale [J]. Journal of the Geological Society, 1992, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171

    CrossRef Google Scholar

    [38] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(15):1554-1569 doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    WU Yuanbao, ZHENG Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age [J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [39] Vermeesch P. IsoplotR: a free and open toolbox for geochronology [J]. Geoscience Frontiers, 2018, 9(5): 1479-1493. doi: 10.1016/j.gsf.2018.04.001

    CrossRef Google Scholar

    [40] 贾军涛, 郑洪波, 杨守业. 长江流域岩体的时空分布与碎屑锆石物源示踪[J]. 同济大学学报:自然科学版, 2010, 38(9):1375-1380

    Google Scholar

    JIA Juntao, ZHENG Hongbo, YANG Shouye. Rock types in Yangtze drainage and their implications for zircon U-Pb provenance study of Yangtze sediments [J]. Journal of Tongji University:Natural Science, 2010, 38(9): 1375-1380.

    Google Scholar

    [41] Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers [J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2660-2673. doi: 10.1016/j.gca.2009.02.007

    CrossRef Google Scholar

    [42] Liang Z W, Gao S, Hawkesworth C J, et al. Step-like growth of the continental crust in South China: evidence from detrital zircons in Yangtze River sediments [J]. Lithos, 2018, 320-321: 155-171. doi: 10.1016/j.lithos.2018.09.011

    CrossRef Google Scholar

    [43] 向芳, 杨栋, 田馨, 等. 湖北宜昌地区第四纪沉积物中锆石的U-Pb年龄特征及其物源意义[J]. 矿物岩石, 2011, 31(2):106-114 doi: 10.3969/j.issn.1001-6872.2011.02.015

    CrossRef Google Scholar

    XIANG Fang, YANG Dong, TIAN Xin, et al. LA-ICP-MS U-Pb geochronology of zircons in the Quaternary sediments from the Yichang area of Hubei Province and its provenance significance [J]. Journal of Mineralogy and Petrology, 2011, 31(2): 106-114. doi: 10.3969/j.issn.1001-6872.2011.02.015

    CrossRef Google Scholar

    [44] Li Z X, Li X H, Zhou H W, et al. Grenvillian continental collision in south China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia [J]. Geology, 2002, 30(2): 163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2

    CrossRef Google Scholar

    [45] Zhang C L, Li M, Wang T, et al. U-Pb zircon geochronology and geochemistry of granitoids in the Douling Group in the eastern Qinling [J]. Acta Geologica Sinica, 2004, 78(1): 83-95.

    Google Scholar

    [46] Vermeesch P. Multi-sample comparison of detrital age distributions [J]. Chemical Geology, 2013, 341: 140-146. doi: 10.1016/j.chemgeo.2013.01.010

    CrossRef Google Scholar

    [47] Yi L, Chen S L, Ortiz J D, et al. 1500-year cycle dominated Holocene dynamics of the Yellow River delta, China [J]. The Holocene, 2016, 26(2): 222-234. doi: 10.1177/0959683615596834

    CrossRef Google Scholar

    [48] Kong G S, Park S C, Han H C, et al. Late Quaternary paleoenvironmental changes in the southeastern Yellow Sea, Korea [J]. Quaternary International, 2006, 144(1): 38-52. doi: 10.1016/j.quaint.2005.05.011

    CrossRef Google Scholar

    [49] Zhou X, Sun L G, Huang W, et al. Relationship between magnetic susceptibility and grain size of sediments in the China Seas and its implications [J]. Continental Shelf Research, 2014, 72: 131-137. doi: 10.1016/j.csr.2013.07.011

    CrossRef Google Scholar

    [50] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009

    CrossRef Google Scholar

    [51] Hu B Q, Yang Z S, Zhao M X, et al. Grain size records reveal variability of the East Asian Winter Monsoon since the Middle Holocene in the Central Yellow Sea mud area, China [J]. Science China Earth Sciences, 2012, 55(10): 1656-1668. doi: 10.1007/s11430-012-4447-7

    CrossRef Google Scholar

    [52] Zhou X, Sun L G, Huang W, et al. Precipitation in the Yellow River drainage basin and East Asian monsoon strength on a decadal time scale [J]. Quaternary Research, 2012, 78(3): 486-491. doi: 10.1016/j.yqres.2012.07.008

    CrossRef Google Scholar

    [53] Zhou X, Jia N, Cheng W H, et al. Relocation of the Yellow River estuary in 1855 AD recorded in the sediment core from the northern Yellow Sea [J]. Journal of Ocean University of China, 2013, 12(4): 624-628. doi: 10.1007/s11802-013-2199-4

    CrossRef Google Scholar

    [54] Naimie C E, Blain C A, Lynch D R. Seasonal mean circulation in the Yellow Sea: a model-generated climatology [J]. Continental Shelf Research, 2001, 21(6-7): 667-695. doi: 10.1016/S0278-4343(00)00102-3

    CrossRef Google Scholar

    [55] 王飞飞, 刘健, 仇建东, 等. 南黄海中西部全新世中期以来泥质沉积厚度与成因[J]. 海洋地质与第四纪地质, 2014, 34(5):1-11

    Google Scholar

    WANG Feifei, LIU Jian, QIU Jiandong, et al. Thickness variation and provenance of Mid-Holocene mud sediments in the central and western South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2014, 34(5): 1-11.

    Google Scholar

    [56] 李铁刚, 李绍全, 苍树溪, 等. YSDP102钻孔有孔虫动物群与南黄海东南部古水文重建[J]. 海洋与湖沼, 2000, 31(6):588-595 doi: 10.3321/j.issn:0029-814X.2000.06.002

    CrossRef Google Scholar

    LI Tiegang, LI Shaoquan, CANG Shuxi, et al. Paleo-hydrological reconstruction of the southern Yellow Sea inferred from foraminiferal fauna in core YSDP102 [J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 588-595. doi: 10.3321/j.issn:0029-814X.2000.06.002

    CrossRef Google Scholar

    [57] 王利波, 杨作升, 赵晓辉, 等. 南黄海中部泥质区YE-2孔8.4 ka BP来的沉积特征[J]. 海洋地质与第四纪地质, 2009, 29(5):1-11

    Google Scholar

    WANG Libo, YANG Zuosheng, ZHAO Xiaohui, et al. Sedimentary characteristics of core YE-2 from the central mud area in the South Yellow Sea during last 8400 years and its interspace coarse layers [J]. Marine Geology & Quaternary Geology, 2009, 29(5): 1-11.

    Google Scholar

    [58] 刘庚, 韩喜彬, 陈燕萍, 等. 南黄海沉积物磁性特征及其对物源变化的指示: 以南黄海中部泥质区YSC-10孔为例[J]. 沉积学报, 2021, 39(2):383-394

    Google Scholar

    LIU Geng, HAN Xibin, CHEN Yanping, et al. Magnetic characteristics of core YSC - 10 sediments in the central Yellow Sea mud area and implications for provenance changes [J]. Acta Sedimentologica Sinica, 2021, 39(2): 383-394.

    Google Scholar

    [59] 胡刚, 张勇, 孔祥淮, 等. 全新世中国大河三角洲沉积演化模式转化及其对人类活动的响应[J]. 海洋地质与第四纪地质, 2021, 41(5):77-89 doi: 10.16562/j.cnki.0256-1492.2020122201

    CrossRef Google Scholar

    HU Gang, ZHANG Yong, KONG Xianghuai, et al. Changes of evolution models of China's large river deltas since Holocene and their responses to anthropogenic activities [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 77-89. doi: 10.16562/j.cnki.0256-1492.2020122201

    CrossRef Google Scholar

    [60] 孙效功, 方明, 黄伟. 黄、东海陆架区悬浮体输运的时空变化规律[J]. 海洋与湖沼, 2000, 31(6):581-587 doi: 10.3321/j.issn:0029-814X.2000.06.001

    CrossRef Google Scholar

    SUN Xiaogong, FANG Ming, HUANG Wei. Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea shelf [J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 581-587. doi: 10.3321/j.issn:0029-814X.2000.06.001

    CrossRef Google Scholar

    [61] 刘德政, 夏非. 江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义[J]. 海洋地质与第四纪地质, 2021, 41(5):210-220 doi: 10.16562/j.cnki.0256-1492.2021051901

    CrossRef Google Scholar

    LIU Dezheng, XIA Fei. Characteristics of grain size and magnetic susceptibility of the Late Quaternary sediments from core 07SR01 in the middle Jiangsu coast and their paleoenvironmental significances [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901

    CrossRef Google Scholar

    [62] Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: tectonic or climate forcing? [J]. Quaternary Science Reviews, 2019, 216: 74-88. doi: 10.1016/j.quascirev.2019.06.002

    CrossRef Google Scholar

    [63] 杨子赓. Olduvai亚时以来南黄海沉积层序及古地理变迁[J]. 地质学报, 1993, 67(4):357-366

    Google Scholar

    YANG Zigeng. The sedimentary sequence and palaeogeographic changes of the South Yellow Sea since the Olduvai subchron [J]. Acta Geologica Sinica, 1993, 67(4): 357-366.

    Google Scholar

    [64] Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003

    CrossRef Google Scholar

    [65] Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow sea [J]. Quaternary Science Reviews, 2016, 144: 1-15. doi: 10.1016/j.quascirev.2016.05.025

    CrossRef Google Scholar

    [66] Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last~3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications [J]. Marine Geology, 2018, 399: 47-65. doi: 10.1016/j.margeo.2017.11.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(1406) PDF downloads(42) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint