2023 Vol. 43, No. 1
Article Contents

ZHAO Qing, ZHOU Limin, ZHENG Xiangmin, WANG Hui, LV Honghua, CHEN Yuanyuan. Characteristics of organic carbon isotope and the paleoenvironmental significances of loess in Shengshan Island during the Last Glacial Period[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 159-169. doi: 10.16562/j.cnki.0256-1492.2022061403
Citation: ZHAO Qing, ZHOU Limin, ZHENG Xiangmin, WANG Hui, LV Honghua, CHEN Yuanyuan. Characteristics of organic carbon isotope and the paleoenvironmental significances of loess in Shengshan Island during the Last Glacial Period[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 159-169. doi: 10.16562/j.cnki.0256-1492.2022061403

Characteristics of organic carbon isotope and the paleoenvironmental significances of loess in Shengshan Island during the Last Glacial Period

More Information
  • The organic carbon isotope composition in loess deposits is closely related to paleoclimate, which is of great significance to the study of regional environmental evolution. The loess deposit of the Last Glacial Period in Shengshan Island in the East China Sea off the East China was studied. The magnetic susceptibility and element geochemistry were analyzed, based on which the organic carbon isotope composition was scrutinized. Results show that since the Last Glaciation, the organic carbon isotope composition in the loess fluctuated from −21.63‰ to −27.56‰ on average of −24.88‰. In general, the value of organic carbon isotope decreased with the increase in burial depth of the loess. In addition, the relative abundance of C3/C4 vegetation in Shengshan Island was estimated by using the end-member method. It was revealed that the C3 plants dominated in the island since the Last Glacial Period, and C4 plants were very limited in the contribution to the organic carbon isotope in the loess deposit. In comparison with the oxygen isotope data of the cave stalagmites in Nanjing, marine sediments from Sulu Sea, and Antarctic Vostok ice core, the loess was deposited during the interstage of the Last Glaciation, and the fluctuation in organic carbon isotope value was resulted mainly from the responses of local ancient C3 plant-dominated vegetation to the variation of precipitation condition. The precipitation was the main influential factor on the organic carbon isotope variation during the period. In the last deglaciation stage, the paleo-temperature favored C4 plants booming, thus the relative abundance of C4 plants increased, and so did their contribution to the fluctuation of organic carbon isotopes in the loess deposits in the island.

  • 加载中
  • [1] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985

    Google Scholar

    LIU Tungsheng. Loess and the Environment[M]. Beijing: Science Press, 1985.

    Google Scholar

    [2] Maher B A. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau [J]. Quaternary Science Reviews, 2016, 154: 23-84. doi: 10.1016/j.quascirev.2016.08.004

    CrossRef Google Scholar

    [3] Yang H, Li G Q, Gou S Y et al. The close-space luminescence dated loess record from SW Junggar Basin indicates persistent aridity during the last glacial-interglacial cycle in lowlands of Central Asia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 584: 110664. doi: 10.1016/j.palaeo.2021.110664

    CrossRef Google Scholar

    [4] Li P, Zhang C X, Wu H B et al. Geochemical characteristics of Holocene loess-paleoslol sequences in central Chinese Loess Plateau and their implications for East Asian monsoon evolution [J]. Quaternary International, 2022, 616: 99-108. doi: 10.1016/j.quaint.2021.10.017

    CrossRef Google Scholar

    [5] Xu X W, Qiang X K, Hu S et al. Records of the Mid-Brunhes Event in Chinese loess-paleosol sequences [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 543: 109596. doi: 10.1016/j.palaeo.2020.109596

    CrossRef Google Scholar

    [6] Mir J A, Dar R A, Vinnepand M et al. Environmental reconstruction potentials of loess-paleosol-sequences in Kashmir through high-resolution proxy data [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601: 111100. doi: 10.1016/j.palaeo.2022.111100

    CrossRef Google Scholar

    [7] Wang Y, Guo F, Ma L et al. Millennial-scale summer monsoon oscillations over the last 260 ka revealed by high-resolution elemental results of the Mangshan loess-palaeosol sequence from the southeastern Chinese Loess Plateau [J]. Quaternary International, 2020, 552: 164-174. doi: 10.1016/j.quaint.2020.05.039

    CrossRef Google Scholar

    [8] 周家兴, 于娟, 杨丽君, 等. 铜川地区早中全新世黄土沉积特征及其古气候意义[J]. 海洋地质与第四纪地质, 2020, 40(1):160-166

    Google Scholar

    ZHOU Jiaxing, YU Juan, YANG Lijun et al. Sedimentary characteristics of the early and middle Holocene loess in Tongchuan area and their implications for paleoclimate [J]. Marine Geology & Quaternary Geology, 2020, 40(1): 160-166.

    Google Scholar

    [9] Ding Z L, Yu Z W, Yang S L et al. Coeval changes in grain size and sedimentation rate of eolian loess, the Chinese Loess Plateau [J]. Geophysical Research Letters, 2001, 28(10): 2097-2100. doi: 10.1029/2000GL006110

    CrossRef Google Scholar

    [10] Kong X H, Zhou W J, Beck J W et al. Loess magnetic susceptibility flux: A new proxy of East Asian monsoon precipitation [J]. Journal of Asian Earth Sciences, 2020, 201: 104489. doi: 10.1016/j.jseaes.2020.104489

    CrossRef Google Scholar

    [11] 刘秀铭, 刘东生, Heller F, 等. 黄土频率磁化率与古气候冷暖变换[J]. 第四纪研究, 1990,10(1):42-50 doi: 10.3321/j.issn:1001-7410.1990.01.005

    CrossRef Google Scholar

    LIU Xiuming, LIU Tungsheng, Heller F et al. Frequency-dependent susceptibility of loess and quaternary paleoclimate [J]. Quaternary Sciences, 1990,10(1): 42-50. doi: 10.3321/j.issn:1001-7410.1990.01.005

    CrossRef Google Scholar

    [12] 石 浩, 岳大鹏, 赵景波, 等. 陕西绥德地区黄土-古土壤序列地球化学特征及其环境指示意义[J]. 地球与环境, 2022, 50(1):1-13

    Google Scholar

    SHI Hao, YUE Dapeng, ZHAO Jingbo et al. Geochemical characteristics of loess paleosol sequence and its environmental implications in Suide area, Shanxi [J]. Earth and Environment, 2022, 50(1): 1-13.

    Google Scholar

    [13] 田庆春, 郝晓龙, 韩军青, 等. 临汾盆地黄土沉积微量元素地球化学特征及其气候意义[J]. 干旱区资源与环境, 2022, 36(5):87-93 doi: 10.13448/j.cnki.jalre.2022.123

    CrossRef Google Scholar

    TIAN Qingchun, HAO Xiaolong, HAN Junqing et al. Geochemical characteristics and climatic significance of trace elements in loess of Linfen basin [J]. Journal of Arid Land Resources and Environment, 2022, 36(5): 87-93. doi: 10.13448/j.cnki.jalre.2022.123

    CrossRef Google Scholar

    [14] Yang S L, Liu L, Chen H et al. Variability and environmental significance of organic carbon isotopes in Ganzi loess since the last interglacial on the eastern Tibetan Plateau [J]. Catena, 2021, 196: 104866. doi: 10.1016/j.catena.2020.104866

    CrossRef Google Scholar

    [15] Zhou B, Wali G, Peterse F et al. Organic carbon isotope and molecular fossil records of vegetation evolution in central Loess Plateau since 450 kyr [J]. Science China Earth Sciences, 2016, 59(6): 1206-1215. doi: 10.1007/s11430-016-5276-x

    CrossRef Google Scholar

    [16] An Z S, Huang Y S, Liu W G et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation [J]. Geology, 2005, 33(9): 705-708. doi: 10.1130/G21423.1

    CrossRef Google Scholar

    [17] O’Leary M H. Carbon isotope fractionation in plants [J]. Phytochemistry, 1981, 20(4): 553-567. doi: 10.1016/0031-9422(81)85134-5

    CrossRef Google Scholar

    [18] O’Leary M H. Carbon isotope in photosynthesis [J]. BioScience, 1988, 38(5): 328-336. doi: 10.2307/1310735

    CrossRef Google Scholar

    [19] Kohn M J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19691-19695. doi: 10.1073/pnas.1004933107

    CrossRef Google Scholar

    [20] Liu W G, Huang Y S. Reconstructing in-situ vegetation dynamics using carbon isotopic composition of biopolymeric residues in the central Chinese Loess Plateau [J]. Chemical Geology, 2008, 249(3-4): 348-356. doi: 10.1016/j.chemgeo.2008.01.010

    CrossRef Google Scholar

    [21] Liu W G, Yang H, Ning Y F et al. Contribution of inherent organic carbon to the bulk δ13C signal in loess deposits from the arid western Chinese Loess Plateau [J]. Organic Geochemistry, 2007, 38(9): 1571-1579. doi: 10.1016/j.orggeochem.2007.05.004

    CrossRef Google Scholar

    [22] 饶志国, 郭文康, 薛骞, 等. 黄土高原西部地区黄土地层有机质主要来源分析[J]. 第四纪研究, 2015, 35(4):819-827 doi: 10.11928/j.issn.1001-7410.2015.04.04

    CrossRef Google Scholar

    RAO Zhiguo, GUO Wenkang, XUE Qian et al. Assessment on primary provenance of organic matter in loess/paleosol sequences in the western Chinese Loess Plateau: local biomass or bedrocks in dust source regions? [J]. Quaternary Sciences, 2015, 35(4): 819-827. doi: 10.11928/j.issn.1001-7410.2015.04.04

    CrossRef Google Scholar

    [23] Zhang Z H, Zhao M X, Lu H Y et al. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 214(3-4): 467-481.

    Google Scholar

    [24] 饶志国, 陈发虎, 曹洁, 等. 黄土高原西部地区末次冰期和全新世有机碳同位素变化与C3 /C4植被类型转换研究[J]. 第四纪研究, 2005, 25(1):107-114 doi: 10.3321/j.issn:1001-7410.2005.01.015

    CrossRef Google Scholar

    RAO Zhiguo, CHEN Fahu, CAO Jie et al. Variation of soil organic carbon isotope and C3/C4 vegetation type transition in the western loess plateau during the last glacial and Holocene periods [J]. Quaternary Sciences, 2005, 25(1): 107-114. doi: 10.3321/j.issn:1001-7410.2005.01.015

    CrossRef Google Scholar

    [25] Liu W G, Yang H, Sun Y B et al. δ13C values of loess total carbonate: A sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese Loess Plateau [J]. Chemical Geology, 2011, 284(3-4): 317-322. doi: 10.1016/j.chemgeo.2011.03.011

    CrossRef Google Scholar

    [26] Yang S L, Ding Z L, Li Y Y et al. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43): 13178-13183. doi: 10.1073/pnas.1504688112

    CrossRef Google Scholar

    [27] 林本海, 刘荣谟. 最近800ka黄土高原夏季风变迁的稳定同位素证据[J]. 科学通报, 1992(18):1691-1693 doi: 10.3321/j.issn:0023-074X.1992.18.023

    CrossRef Google Scholar

    LIN Benhai, LIU Rongmo. Stable isotopic evidence of the summer monsoon evolution during the last 800ka in Chinese Loess Plateau [J]. Chinese Science Bulletin, 1992(18): 1691-1693. doi: 10.3321/j.issn:0023-074X.1992.18.023

    CrossRef Google Scholar

    [28] Vidic N J, Montañez I P. Climatically driven glacial-interglacial variations in C3 and C4 plant proportions on the Chinese Loess Plateau [J]. Geology, 2004, 32(4): 337-340. doi: 10.1130/G20222.2

    CrossRef Google Scholar

    [29] Chen F H, Rao Z G, Zhang J W et al. Variations of organic carbon isotopic composition and its environmental significance during the last glacial on western Chinese Loess Plateau [J]. Chinese Science Bulletin, 2006, 51(13): 1593-1602. doi: 10.1007/s11434-006-2003-6

    CrossRef Google Scholar

    [30] Liu W G, Huang Y S, An Z S et al. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(3-4): 243-254. doi: 10.1016/j.palaeo.2005.01.001

    CrossRef Google Scholar

    [31] Hatté C, Fontugne M, Rousseau D D et al. δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian [J]. Geology, 1998, 26(7): 583-586. doi: 10.1130/0091-7613(1998)026<0583:CVOLOM>2.3.CO;2

    CrossRef Google Scholar

    [32] 郑祥民, 刘飞. 长江三角洲与东海岛屿黄土研究综述[J]. 华东师范大学学报: 自然科学版, 2006(6):9-24

    Google Scholar

    ZHENG Xiangmin, LIU Fei. Review of research on loess in the Yangtze River delta and the East China Sea islands [J]. Journal of East China Normal University(Natural Science), 2006(6): 9-24.

    Google Scholar

    [33] 石娇星. 舟山群岛植被分类与制图[D]. 华东师范大学硕士学位论文, 2021: 62-63

    Google Scholar

    SHI Jiaoxing. Vegetation classification and mapping of Zhoushan archipelago[D]. Master Dissertation of East China Normal University, 2021: 62-63.

    Google Scholar

    [34] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503-537. doi: 10.1146/annurev.pp.40.060189.002443

    CrossRef Google Scholar

    [35] 饶志国, 朱照宇, 贾国东, 等. 环北太平洋地区现代植被中C3/C4 植物相对丰度与气候条件关系研究[J]. 科学通报, 2010, 55(18):1931-1936 doi: 10.1007/s11434-010-3101-z

    CrossRef Google Scholar

    RAO Zhiguo, ZHU Zhaoyu, JIA Guodong et al. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific [J]. Chinese Science Bulletin, 2010, 55(18): 1931-1936. doi: 10.1007/s11434-010-3101-z

    CrossRef Google Scholar

    [36] Tieszen L L, Reed B C, Bliss N B et al. NDVI, C3 and C4 production and distributions in Great Plains grassland land cover classes [J]. Ecological Applications, 1997, 7(1): 59-78.

    Google Scholar

    [37] Bird M I, Pousai P. Variations of δ 13C in the surface soil organic carbon pool [J]. Global Biogeochemical Cycles, 1997, 11(3): 313-322. doi: 10.1029/97GB01197

    CrossRef Google Scholar

    [38] 饶志国, 贾国东, 朱照宇, 等. 中国东部表土总有机质碳同位素和长链正构烷烃碳同位素对比研究及其意义[J]. 科学通报, 2008, 53(24):3921-3927 doi: 10.3321/j.issn:0023-074X.2008.17.013

    CrossRef Google Scholar

    RAO Zhiguo JIA Guodong ZHU Zhaoyu et al. Comparison of the carbon isotope composition of total organic carbon and long-chain n-alkanes from surface soils in Eastern China and their significance [J]. Chinese Science Bulletin, 2008, 53(24): 3921-3927. doi: 10.3321/j.issn:0023-074X.2008.17.013

    CrossRef Google Scholar

    [39] 何勇, 秦大河, 任贾文, 等. 塬堡黄土剖面末次间冰期古土壤有机质碳同位素记录的夏季风演化历史[J]. 科学通报, 2002, 47(15):1289-1291 doi: 10.3321/j.issn:0023-074X.2002.12.013

    CrossRef Google Scholar

    HE Yong, QIN Dahe, REN Jiawen et al. The summer monsoon evolution recorded by carbon isotope of organic matter from the Yuanbao loess section during the last Interglaciation [J]. Chinese Science Bulletin, 2002, 47(15): 1289-1291. doi: 10.3321/j.issn:0023-074X.2002.12.013

    CrossRef Google Scholar

    [40] Wang G A, Feng X, Han J et al. Paleovegetation reconstruction using δ13C of soil organic matter [J]. Biogeosciences, 2008, 5: 1325-1337. doi: 10.5194/bg-5-1325-2008

    CrossRef Google Scholar

    [41] Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan [J]. Nature, 1989, 342(6246): 163-166. doi: 10.1038/342163a0

    CrossRef Google Scholar

    [42] Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate [J]. Earth and Planetary Science letters, 1984, 71(2): 229-240. doi: 10.1016/0012-821X(84)90089-X

    CrossRef Google Scholar

    [43] 刘卫国, 宁有丰, 安芷生, 等. 黄土高原现代土壤和古土壤有机碳同位素对植被的响应[J]. 中国科学D辑, 2005, 48(10):93-99

    Google Scholar

    LIU Weiguo, NING Youfeng, AN Zhisheng, et al. Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau [J]. Science in China Series D:Earth Sciences, 2005, 48(10): 93-99.

    Google Scholar

    [44] Lyu A Q, Lu H Y, Zeng L et al. Vegetation variation of loess deposits in the southeastern Inner Mongolia, NE China over the past ~1.08 million years [J]. Journal of Asian Earth Sciences, 2018, 155: 174-179. doi: 10.1016/j.jseaes.2017.11.013

    CrossRef Google Scholar

    [45] 张月馨, 迟云平, 谢远云, 等. 中更新世以来哈尔滨黄土有机碳同位素组成及其古气候意义[J]. 地球学报, 2020, 41(4):525-534 doi: 10.3975/cagsb.2020.040602

    CrossRef Google Scholar

    ZHANG Yuexin, CHI Yunping, XIE Yuanyun et al. Organic carbon isotope composition of Harbin loess since the Mid-Pleistocene and its paleoclimatic significance [J]. Acta Geoscientica Sinica, 2020, 41(4): 525-534. doi: 10.3975/cagsb.2020.040602

    CrossRef Google Scholar

    [46] 匡欢传, 周浩达, 胡建芳, 等. 末次盛冰期和全新世大暖期湖光岩玛珥湖沉积记录的正构烷烃和单体稳定碳同位素分布特征及其古植被意义[J]. 第四纪研究, 2013, 33(6):1222-1233 doi: 10.3969/j.issn.1001-7410.2013.06.18

    CrossRef Google Scholar

    KUANG Huanchuan ZHOU Haoda, HU Jianfang et al. Variations of n-alkanes and compound-specific carbon isotopes in sediment from Huguangyan Maar Lake during the last glacial maximum and Holocence optimum: Implications for paleovegetation [J]. Quaternary Sciences, 2013, 33(6): 1222-1233. doi: 10.3969/j.issn.1001-7410.2013.06.18

    CrossRef Google Scholar

    [47] 顾兆炎, 刘强, 许冰, 等. 气候变化对黄土高原末次盛冰期以来的C3/C4 植物相对丰度的控制[J]. 科学通报, 2003, 48(12):1271-1276 doi: 10.3321/j.issn:0023-074X.2003.12.008

    CrossRef Google Scholar

    GU Zhaoyan, LIU Qiang, XU Bing et al. Climate as the dominant control on C3 and C4 plant abundance in the Loess Plateau: Organic carbon isotope evidence from the last glacial-interglacial loess-soil sequences [J]. Chinese Science Bulletin, 2003, 48(12): 1271-1276. doi: 10.3321/j.issn:0023-074X.2003.12.008

    CrossRef Google Scholar

    [48] Diefendorf A F, Mueller K E, Wing S L et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5738-5743. doi: 10.1073/pnas.0910513107

    CrossRef Google Scholar

    [49] Ehleringer J R, Cooper T A. Correlations between carbon isotope ratio and microhabitat in desert plants [J]. Oecologia, 1988, 76(4): 562-566. doi: 10.1007/BF00397870

    CrossRef Google Scholar

    [50] 王国安, 韩家懋, 刘东生. 中国北方黄土区C-3草本植物碳同位素组成研究[J]. 中国科学D辑, 2003, 46(10):1069-1076 doi: 10.3321/j.issn:1006-9267.2003.06.008

    CrossRef Google Scholar

    WANG Guoan, HAN Jiamao, LIU Tungsheng. The carbon isotope composition of C3 herbaceous plants in loess area of northern China [J]. Science in China series D:Earth Sciences, 2003, 46(10): 1069-1076. doi: 10.3321/j.issn:1006-9267.2003.06.008

    CrossRef Google Scholar

    [51] Liu W G, Feng X H, Ning Y F et al. δ13C variation of C3 and C4 plants across an Asian monsoon rainfall gradient in arid northwestern China [J]. Global Change Biology, 2005, 11(7): 1094-1100. doi: 10.1111/j.1365-2486.2005.00969.x

    CrossRef Google Scholar

    [52] Wang G A, Li J Z, Liu X Z et al. Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction [J]. Quaternary Science Reviews, 2013, 63: 83-90. doi: 10.1016/j.quascirev.2012.12.004

    CrossRef Google Scholar

    [53] An Z S, Kukla G J, Porter S C et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130, 000 years [J]. Quaternary Research, 1991, 36(1): 29-36. doi: 10.1016/0033-5894(91)90015-W

    CrossRef Google Scholar

    [54] 宁有丰, 刘卫国, 安芷生. 甘肃西峰黄土-古土壤剖面的碳酸盐与有机碳的碳同位素差值(Δδ13C)的变化及其古环境意义[J]. 科学通报, 2006, 51(11):1350-1354 doi: 10.1007/s11434-006-1350-7

    CrossRef Google Scholar

    NING Youfeng, LIU Weiguo, AN Zhisheng. Variation of soil Δδ13C values in Xifeng loess-paleosol sequence and its paleoenvironmental implication [J]. Chinese Science Bulletin, 2006, 51(11): 1350-1354. doi: 10.1007/s11434-006-1350-7

    CrossRef Google Scholar

    [55] Wang G A, Zhang L L, Zhang X Y et al. Chemical and carbon isotopic dynamics of grass organic matter during litter decompositions: A litterbag experiment [J]. Organic Geochemistry, 2014, 69: 106-113. doi: 10.1016/j.orggeochem.2014.02.012

    CrossRef Google Scholar

    [56] Feng X H, Epstein S. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration [J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2599-2608. doi: 10.1016/0016-7037(95)00152-2

    CrossRef Google Scholar

    [57] Jouzel J, Lorius C, Petit J R et al. Vostok ice core: a continuous isotope temperature record over the last climatic cycle(160 000 years) [J]. Nature, 1987, 329(6138): 403-408. doi: 10.1038/329403a0

    CrossRef Google Scholar

    [58] SeltzerA M, Ng J, Aeschbach W et al. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum [J]. Nature, 2021, 593(7858): 228-232. doi: 10.1038/s41586-021-03467-6

    CrossRef Google Scholar

    [59] 陈骏, 汪永进, 季峻峰, 等. 陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义[J]. 第四纪研究, 1999, 19(4):350-356 doi: 10.3321/j.issn:1001-7410.1999.04.007

    CrossRef Google Scholar

    CHEN Jun, WANG Yongjin, JI Junfeng et al. Rb/Sr variations and its climatic stratigraphical significance of a loess-paleosol profile from Louchuan, Shanxi province [J]. Quaternary Sciences, 1999, 19(4): 350-356. doi: 10.3321/j.issn:1001-7410.1999.04.007

    CrossRef Google Scholar

    [60] Peng W B, Nie J S, Wang Z et al. A major change in precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary [J]. Journal of Asian Earth Sciences, 2018, 155: 134-138. doi: 10.1016/j.jseaes.2017.10.031

    CrossRef Google Scholar

    [61] Hatté C, Antoine P, Fontugne M et al. δ13C of loess organic matter as a potential proxy for paleoprecipitation [J]. Quaternary Research, 2001, 55(1): 33-38. doi: 10.1006/qres.2000.2191

    CrossRef Google Scholar

    [62] Wang Y J, Cheng H, Edwards R L et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618

    CrossRef Google Scholar

    [63] Linsley B K. Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150, 000 years [J]. Nature, 1996, 380(6571): 234-237. doi: 10.1038/380234a0

    CrossRef Google Scholar

    [64] Petit J R, Jouzel J, Raynaud D et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399(6735): 429-436. doi: 10.1038/20859

    CrossRef Google Scholar

    [65] 饶志国, 陈发虎, 张晓, 等. 末次冰期以来全球陆地植被中C3/C4植物相对丰度时空变化基本特征及其可能的驱动机制[J]. 科学通报, 2012, 57(31):4024-4035 doi: 10.1007/s11434-012-5233-9

    CrossRef Google Scholar

    RAO Zhiguo, CHEN Fahu, ZHANG Xiao et al. Spatial and temporal variations of C3/C4 relative abundance in global terrestrial ecosystem since the Last Glacial and its possible driving mechanisms [J]. Chinese Science Bulletin, 2012, 57(31): 4024-4035. doi: 10.1007/s11434-012-5233-9

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(594) PDF downloads(49) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint