2022 Vol. 42, No. 4
Article Contents

HUANG Zihang, XIAO Yuanyuan. Comparison in geochemical characteristics and genesis models of different boninites between Qilian Orogen and Izu-Bonin arc system[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 135-145. doi: 10.16562/j.cnki.0256-1492.2022050401
Citation: HUANG Zihang, XIAO Yuanyuan. Comparison in geochemical characteristics and genesis models of different boninites between Qilian Orogen and Izu-Bonin arc system[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 135-145. doi: 10.16562/j.cnki.0256-1492.2022050401

Comparison in geochemical characteristics and genesis models of different boninites between Qilian Orogen and Izu-Bonin arc system

More Information
  • Boninites are characterized by high-Si (>52 wt.%), high-Mg (>8 wt.%), and low-Ti (<0.5 wt.%). Boninite is thought to be originated from the partial melting of the refractory mantle induced by fluids released from the subducting seafloor during the subduction initiation. Therefore, study on petrogenesis of boninite is of great significance to further understand the geodynamic mechanism of subduction initiation. Although contribution of subducted materials for the boninitic magma source is significant as people commonly believed, the varying enriched extents of incompatible elements among different boninites reflect the complex physicochemical properties of subducting slab-derived fluids for the formation of boninites. In this study, we compared boninite from the Izu-Bonin-Mariana (IBM) arc system and the North Qilian orogenic belt, and found many geochemical differences between them. Compared to Izu-Bonin boninites, boninite from the North Qilian orogeny does not show U-shaped rare earth element (REE) pattern or enriched light REEs and Zr-Hf, while both of them have highly varied ratios of fluid-soluble element to incompatible element (e.g. Ba/La) and high (87Sr/86Sr)i values. These characteristics reflect the contribution of slab-derived fluids / melts to the magma source for Qilian/Izu-Bonin boninite, respectively. Different from the Izu-Bonin boninite, the Qilian boninite is likely to be produced in a mature subduction system with back-arc spreading centers. Combined with previous studies, we proposed two potential ways for the formation of the Qilian boninite unrelated to the seafloor subduction initiation: (1) the back-arc lithosphere extension and the hot mantle upwelling provided a suitable temperature and pressure for the formation of boninite magmas, with the contribution of the hydrated/serpentinized mantle; (2) the corner flow carried the residual peridotite of the back-arc mantle into the sub-arc/fore-arc mantle, which can be melted and possibly induce dehydration of the subducting slab again to produce boninite magmas.

  • 加载中
  • [1] Parkinson I J, Hawkesworth C J, Cohen A S. Ancient mantle in a modern arc: Osmium isotopes in Izu-Bonin-Mariana forearc peridotites [J]. Science, 1998, 281(5385): 2011-2013. doi: 10.1126/science.281.5385.2011

    CrossRef Google Scholar

    [2] Stern R J. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4): 1012.

    Google Scholar

    [3] Reagan M K, Ishizuka O, Stern R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03X12.

    Google Scholar

    [4] Ishizuka O, Hickey-Vargas R, Arculus R J, et al. Age of Izu-Bonin-Mariana arc basement [J]. Earth and Planetary Science Letters, 2018, 481: 80-90. doi: 10.1016/j.jpgl.2017.10.023

    CrossRef Google Scholar

    [5] Li H Y, Zhao R P, Li J, et al. Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc [J]. Nature Communications, 2021, 12(1): 6015. doi: 10.1038/s41467-021-26322-8

    CrossRef Google Scholar

    [6] Shervais J W, Reagan M K, Godard M, et al. Magmatic response to subduction initiation, Part II: boninites and related rocks of the Izu-Bonin arc from IODP expedition 352 [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(1): e2020GC009093.

    Google Scholar

    [7] Crawford A J, Falloon T J, Green D H. Classification, petrogenesis and tectonic setting of boninites[M]//Crawford A J. Boninites and Related Rocks, Unwin and Hyman. London: Australian Research Council, 1989: 1-49.

    Google Scholar

    [8] Falloon T J, Danyushevsky L V. Melting of refractory mantle at 1 · 5, 2 and 2 · 5 GPa under, anhydrous and H2O-undersaturated conditions: Implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting [J]. Journal of Petrology, 2000, 41(2): 257-283. doi: 10.1093/petrology/41.2.257

    CrossRef Google Scholar

    [9] Ishizuka O, Kimura J, Li Y, et al. Early stages in the evolution of Izu–Bonin arc volcanism: New age, chemical, and isotopic constraints [J]. Earth and Planetary Science Letters, 2006, 250(1-2): 385-401. doi: 10.1016/j.jpgl.2006.08.007

    CrossRef Google Scholar

    [10] Dilek Y, Thy P. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: model for multi-stage early arc-forearc magmatism in Tethyan subduction factories [J]. Lithos, 2009, 113(1-2): 68-87. doi: 10.1016/j.lithos.2009.05.044

    CrossRef Google Scholar

    [11] Reagan M K, Pearce J A, Petronotis K, et al. Subduction initiation and ophiolite crust: new insights from IODP drilling [J]. International Geology Review, 2017, 59(11): 1439-1450. doi: 10.1080/00206814.2016.1276482

    CrossRef Google Scholar

    [12] Stern R J. Subduction initiation: spontaneous and induced [J]. Earth and Planetary Science Letters, 2004, 226(3-4): 275-292. doi: 10.1016/S0012-821X(04)00498-4

    CrossRef Google Scholar

    [13] Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[M]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths. Nantwich, Cheshire: Shiva Publications, 1983: 230-249.

    Google Scholar

    [14] König S, Münker C, Schuth S, et al. Boninites as windows into trace element mobility in subduction zones [J]. Geochimica et Cosmochimica Acta, 2010, 74(2): 684-704. doi: 10.1016/j.gca.2009.10.011

    CrossRef Google Scholar

    [15] 宋述光, 吴珍珠, 杨立明, 等. 祁连山蛇绿岩带和原特提斯洋演化[J]. 岩石学报, 2019, 35(10):2948-2970 doi: 10.18654/1000-0569/2019.10.02

    CrossRef Google Scholar

    SONG Shuguang, WU Zhenzhu, YANG Liming, et al. Ophiolite belts and evolution of the proto-tethys ocean in the qilian orogen [J]. Acta Petrologica Sinica, 2019, 35(10): 2948-2970. doi: 10.18654/1000-0569/2019.10.02

    CrossRef Google Scholar

    [16] 赵国军. 中祁连西段早古生代洋内弧后盆地岩浆作用的厘定及地质意义的研究[D]. 西北大学硕士学位论文, 2019.

    Google Scholar

    ZHAO Guojun. Determination and geological significance of magmatism in the Early Paleozoic intra-ocean back-arc basins in The Western Central Qilian belt[D]. Master Dissertation of Northwest University, 2019.

    Google Scholar

    [17] 孟繁聪, 张建新, 郭春满, 等. 大岔大坂MOR型和SSZ型蛇绿岩对北祁连洋演化的制约[J]. 岩石矿物学杂志, 2010, 29(5):453-466 doi: 10.3969/j.issn.1000-6524.2010.05.001

    CrossRef Google Scholar

    MENG Fancong, ZHANG Jianxin, KER C M, et al. Constraints on the evolution of the North Qilian ocean basin: MOR-type and SSZ-type ophiolites from Dachadaban [J]. Acta Petrologica et Mineralogica, 2010, 29(5): 453-466. doi: 10.3969/j.issn.1000-6524.2010.05.001

    CrossRef Google Scholar

    [18] Xia X H, Song S G, Niu Y L. Tholeiite–Boninite terrane in the North Qilian suture zone: Implications for subduction initiation and back-arc basin development [J]. Chemical Geology, 2012, 328: 259-277. doi: 10.1016/j.chemgeo.2011.12.001

    CrossRef Google Scholar

    [19] 冯益民, 何世平. 北祁连蛇绿岩的地质地球化学研究[J]. 岩石学报, 1995, 11(S1):125-146

    Google Scholar

    FENG Yimin, HE Shiping. Research for geology and geochemistry of several ophiolites in the north Qilian Mountains, China [J]. Acta Petrologica Sinica, 1995, 11(S1): 125-146.

    Google Scholar

    [20] 张旗, 钱青, 陈雨. 蛇绿岩、蛇绿岩上覆岩系及其与洋壳的对比[J]. 地学前缘, 1998, 5(4):193-200 doi: 10.3321/j.issn:1005-2321.1998.04.002

    CrossRef Google Scholar

    ZHANG Qi, QIAN Qing, CHEN Yu. Ophiolite, overlying rock series of ophiolite and their comparison to the oceanic crust [J]. Earth Science Frontiers, 1998, 5(4): 193-200. doi: 10.3321/j.issn:1005-2321.1998.04.002

    CrossRef Google Scholar

    [21] 韩松, 贾秀琴, 钱青, 等. 北祁连大岔大坂两类辉长岩的地质地球化学特征及其构造环境[J]. 岩石矿物学杂志., 2000, 19(2):106-112

    Google Scholar

    HAN Song, JIA Xiuqin, QIAN Qing, et al. Geological and geochemical characteristics of two types of gabbro in Dachadaban, North Qilian and its tectonic environment [J]. Acta Petrologica et Mineralogica, 2000, 19(2): 106-112.

    Google Scholar

    [22] Li H, Arculus R J, Ishizuka O, et al. Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development [J]. Nature Communications, 2021, 12(1): 1723. doi: 10.1038/s41467-021-21980-0

    CrossRef Google Scholar

    [23] Song S G, Niu Y L, Su L, et al. Tectonics of the North Qilian orogen, NW China [J]. Gondwana Research, 2013, 23(4): 1378-1401. doi: 10.1016/j.gr.2012.02.004

    CrossRef Google Scholar

    [24] Ishizuka O, Taylor R N, Umino S, et al. Geochemical evolution of arc and slab following subduction initiation: a record from the Bonin Islands, Japan [J]. Journal of Petrology, 2020, 61(5): egaa050. doi: 10.1093/petrology/egaa050

    CrossRef Google Scholar

    [25] Chen S, Wang X H, Niu Y L, et al. Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS [J]. Science Bulletin, 2017, 62(4): 277-289. doi: 10.1016/j.scib.2017.01.004

    CrossRef Google Scholar

    [26] Sun P, Niu Y L, Guo P Y, et al. Elemental and Sr-Nd-Pb isotope geochemistry of the Cenozoic basalts in Southeast China: Insights into their mantle sources and melting processes [J]. Lithos, 2017, 272-273: 16-30. doi: 10.1016/j.lithos.2016.12.005

    CrossRef Google Scholar

    [27] Pearce J A, Reagan M K. Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Ti systematics [J]. Geosphere, 2019, 15(4): 1008-1037. doi: 10.1130/GES01661.1

    CrossRef Google Scholar

    [28] Perez A, Umino S, Yumul G P Jr, et al. Boninite and boninite-series volcanics in northern Zambales ophiolite: doubly vergent subduction initiation along Philippine Sea plate margins [J]. Solid Earth, 2018, 9(3): 713-733. doi: 10.5194/se-9-713-2018

    CrossRef Google Scholar

    [29] Le Bas M J. IUGS reclassification of the High-Mg and picritic volcanic rocks [J]. Journal of Petrology, 2000, 41(10): 1467-1470. doi: 10.1093/petrology/41.10.1467

    CrossRef Google Scholar

    [30] Ohnenstetter D, Brown W L. Compositional variation and primary water contents of differentiated interstitial and included glasses in boninites [J]. Contributions to Mineralogy and Petrology, 1996, 123(2): 117-137. doi: 10.1007/s004100050146

    CrossRef Google Scholar

    [31] Miyashiro A. Volcanic rock series in island arcs and active continental margins [J]. American Journal of Science, 1974, 274(4): 321-355. doi: 10.2475/ajs.274.4.321

    CrossRef Google Scholar

    [32] Mcdonough W F, Sun S S. The composition of the earth [J]. Chemical Geology, 1995, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4

    CrossRef Google Scholar

    [33] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [34] Taylor B, Fujioka K. Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana arc[C]. Proceedings of the Ocean Drilling Program, Scientific Results, 1992, 126: 627-651.

    Google Scholar

    [35] Kanayama K, Umino S, Ishizuka O. Eocene volcanism during the incipient stage of Izu-Ogasawara Arc: geology and petrology of the Mukojima Island Group, the Ogasawara islands [J]. Island Arc, 2012, 21(4): 288-316. doi: 10.1111/iar.12000

    CrossRef Google Scholar

    [36] Patriat M, Falloon T, Danyushevsky L, et al. Subduction initiation terranes exposed at the front of a 2 Ma volcanically-active subduction zone [J]. Earth And Planetary Science Letters, 2019, 508: 30-40. doi: 10.1016/j.jpgl.2018.12.011

    CrossRef Google Scholar

    [37] Singh M R, Manikyamba C, Ganguly S, et al. Paleoproterozoic arc basalt-boninite-high magnesian andesite-Nb enriched basalt association from the Malangtoli volcanic suite, Singhbhum Craton, eastern India: Geochemical record for subduction initiation to arc maturation continuum [J]. Journal of Asian Earth Sciences, 2017, 134: 191-206. doi: 10.1016/j.jseaes.2016.09.015

    CrossRef Google Scholar

    [38] Whattam S A, Stern R J. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics [J]. Gondwana Research, 2015, 27(1): 38-63. doi: 10.1016/j.gr.2014.07.011

    CrossRef Google Scholar

    [39] Umino S, Kanayama K, Kitamura K, et al. Did boninite originate from the heterogeneous mantle with recycled ancient slab? [J]. Island Arc, 2018, 27(1): e12221. doi: 10.1111/iar.12221

    CrossRef Google Scholar

    [40] Jenner F E, O'neill H S C. Analysis of 60 elements in 616 ocean floor basaltic glasses [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): Q02005.

    Google Scholar

    [41] Murton B J. Tectonic controls on boninite genesis [J]. Geological Society, London, Special Publications, 1989, 42(1): 347-377. doi: 10.1144/GSL.SP.1989.042.01.20

    CrossRef Google Scholar

    [42] Meffre S, Falloon T J, Crawford T J, et al. Basalts erupted along the Tongan fore arc during subduction initiation: Evidence from geochronology of dredged rocks from the Tonga fore arc and trench [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(12): Q12003.

    Google Scholar

    [43] 熊小林, 刘星成, 李立, 等. 俯冲带微量元素分配行为研究: 进展和展望[J]. 中国科学:地球科学, 2020, 63(12):1938-1951 doi: 10.1007/s11430-019-9631-6

    CrossRef Google Scholar

    XIONG Xiaolin, LIU Xingcheng, LI Li, et al. The partitioning behavior of trace elements in subduction zones: Advances and prospects [J]. Science China Earth Sciences, 2020, 63(12): 1938-1951. doi: 10.1007/s11430-019-9631-6

    CrossRef Google Scholar

    [44] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle [J]. Chemical Geology, 1998, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2

    CrossRef Google Scholar

    [45] Manikyamba C, Naqvi S M, Subba Rao D V, et al. Boninites from the Neoarchaean gadwal greenstone belt, Eastern Dharwar Craton, India: implications for Archaean subduction processes [J]. Earth and Planetary Science Letters, 2005, 230(1-2): 65-83. doi: 10.1016/j.jpgl.2004.06.023

    CrossRef Google Scholar

    [46] Falloon T J, Crawford A J. The petrogenesis of high-calcium boninite lavas dredged from the northern Tonga Ridge [J]. Earth and Planetary Science Letters, 1991, 102(3-4): 375-394. doi: 10.1016/0012-821X(91)90030-L

    CrossRef Google Scholar

    [47] Plank T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents [J]. Journal of Petrology, 2005, 46(5): 921-944. doi: 10.1093/petrology/egi005

    CrossRef Google Scholar

    [48] Veizer J. Strontium isotopes in seawater through time [J]. Annual Review of Earth and Planetary Sciences, 1989, 17: 141-167. doi: 10.1146/annurev.ea.17.050189.001041

    CrossRef Google Scholar

    [49] Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B7): 14991-15019. doi: 10.1029/97JB00788

    CrossRef Google Scholar

    [50] Van Der Straaten F, Halama R, John T, et al. Tracing the effects of high-pressure metasomatic fluids and seawater alteration in blueschist-facies overprinted eclogites: Implications for subduction channel processes [J]. Chemical Geology, 2012, 292-293: 69-87. doi: 10.1016/j.chemgeo.2011.11.008

    CrossRef Google Scholar

    [51] Plank T. The chemical composition of subducting sediments[M]//Keeling P F. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 607-629.

    Google Scholar

    [52] Savov I P, Ryan J G, D'Antonio M, et al. Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc [J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B9): B09205.

    Google Scholar

    [53] Zheng Y F. Subduction zone geochemistry [J]. Geoscience Frontiers, 2019, 10(4): 1223-1254. doi: 10.1016/j.gsf.2019.02.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(2984) PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint