2022 Vol. 42, No. 4
Article Contents

YU Wenxiu, HU Limin, SHI Xuefa, ZHANG Yuying, YE Jun, BAI Yazhi, XIA Yi, YANG Gang, Anatolii Astakhov. Geochemical characteristics of black carbon in surface sediments of the East Siberian Arctic Shelf and their environmental implications[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 50-60. doi: 10.16562/j.cnki.0256-1492.2022022001
Citation: YU Wenxiu, HU Limin, SHI Xuefa, ZHANG Yuying, YE Jun, BAI Yazhi, XIA Yi, YANG Gang, Anatolii Astakhov. Geochemical characteristics of black carbon in surface sediments of the East Siberian Arctic Shelf and their environmental implications[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 50-60. doi: 10.16562/j.cnki.0256-1492.2022022001

Geochemical characteristics of black carbon in surface sediments of the East Siberian Arctic Shelf and their environmental implications

More Information
  • Pyrogenic black carbon (BC) is closely related to climate change and human activities. In the context of global warming, the BC emission and transfer from land to sea and the environmental fate provide important scientific clues for understanding the source-sink course of terrigenous organic carbon and its climate and environmental effects under rapid climate change in the Arctic area. The East Siberian Arctic Shelf is the widest and shallowest shelf in the world, receiving a large amount of terrestrial material input from runoff and coastal erosion. Especially in recent years, frequent occurrence of wildfires around the Arctic makes it an ideal area for studying the course and route of source-sink of BC deposited in the Arctic waters. Based on the data of samples collected from the East Siberian shelf, the content, composition, spatial distribution, and influencing factors of BC in surface sediments were studied. Preliminary results show that the content of BC is 0.1~2.3 mg/g, on average of 0.99 mg/g. Among them, char from biomass combustion contributed more than 70% on average. The spatial distribution of BC is very heterogeneous. BC in the Laptev Sea and the western part of the East Siberian Sea is high, which is closely related to coastal erosion and river input. The eastern part of the shelf (including the Chukchi Sea) has less terrigenous input and relatively low BC content. The spatial variability of different types of BC is obvious. In the nearshore region, runoff and coastal erosion is probably the main input pathway of char.

  • 加载中
  • [1] Burdige D J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? [J]. Chemical Reviews, 2007, 107(2): 467-485. doi: 10.1021/cr050347q

    CrossRef Google Scholar

    [2] Bianchi T S, Cui X Q, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface [J]. Organic Geochemistry, 2018, 115: 138-155. doi: 10.1016/j.orggeochem.2017.09.008

    CrossRef Google Scholar

    [3] Masiello C A. New directions in black carbon organic geochemistry [J]. Marine Chemistry, 2004, 92(1-4): 201-213. doi: 10.1016/j.marchem.2004.06.043

    CrossRef Google Scholar

    [4] Schmidt M W I, Noack A G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges [J]. Global Biogeochemical Cycles, 2000, 14(3): 777-793. doi: 10.1029/1999GB001208

    CrossRef Google Scholar

    [5] Bird M I, Wynn J G, Saiz G, et al. The pyrogenic carbon cycle [J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 273-298. doi: 10.1146/annurev-earth-060614-105038

    CrossRef Google Scholar

    [6] Bond T C, Doherty S J, Fahey D W, et al. Bounding the role of black carbon in the climate system: a scientific assessment [J]. Journal of Geophysical Research:Atmospheres, 2013, 118(11): 5380-5552. doi: 10.1002/jgrd.50171

    CrossRef Google Scholar

    [7] Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon [J]. Nature Geoscience, 2008, 1(4): 221-227. doi: 10.1038/ngeo156

    CrossRef Google Scholar

    [8] Gustafsson A Ö, Gschwend A P M. The flux of black carbon to surface sediments on the New England continental shelf [J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 465-472. doi: 10.1016/S0016-7037(97)00370-0

    CrossRef Google Scholar

    [9] Kuhlbusch T A J. Black carbon and the carbon cycle [J]. Science, 1998, 280(5371): 1903-1904. doi: 10.1126/science.280.5371.1903

    CrossRef Google Scholar

    [10] Suman D O, Kuhlbusch T A J, Lim B. Marine sediments: a reservoir for black carbon and their use as spatial and temporal records of combustion[M]//Clark J S, Cachier H, Goldammer J G, et al. Sediment Records of Biomass Burning and Global Change. Berlin: Springer, 1997: 271-293.

    Google Scholar

    [11] Salvadó J A, Bröder L, Andersson A, et al. Release of black carbon from thawing permafrost estimated by sequestration fluxes in the east siberian arctic shelf recipient [J]. Global Biogeochemical Cycles, 2017, 31(10): 1501-1515. doi: 10.1002/2017GB005693

    CrossRef Google Scholar

    [12] Klinedinst D B, Currie L A. Direct quantification of PM2.5 fossil and biomass carbon within the northern front range air quality study's domain [J]. Environmental Science & Technology, 1999, 33(23): 4146-4154.

    Google Scholar

    [13] 王效科, 白艳莹, 欧阳志云, 等. 全球碳循环中的失汇及其形成原因[J]. 生态学报, 2002, 22(1):94-103 doi: 10.3321/j.issn:1000-0933.2002.01.013

    CrossRef Google Scholar

    WANG Xiaoke, BAI Yanying, OUYANG Zhiyun, et al. Missing sink in global carbon cycle and its causes [J]. Acta Ecologica Sinica, 2002, 22(1): 94-103. doi: 10.3321/j.issn:1000-0933.2002.01.013

    CrossRef Google Scholar

    [14] Druffel E R M. Comments on the importance of black carbon in the global carbon cycle [J]. Marine Chemistry, 2004, 92(1-4): 197-200. doi: 10.1016/j.marchem.2004.06.026

    CrossRef Google Scholar

    [15] Sánchez-García L, Cato I, Gustafsson Ö. The sequestration sink of soot black carbon in the Northern European Shelf sediments [J]. Global Biogeochemical Cycles, 2012, 26(1): GB1001.

    Google Scholar

    [16] Hu L M, Shi X F, Bai Y Z, et al. Distribution, input pathway and mass inventory of black carbon in sediments of the Gulf of Thailand, SE Asia [J]. Estuarine, Coastal and Shelf Science, 2016, 170: 10-19. doi: 10.1016/j.ecss.2015.12.019

    CrossRef Google Scholar

    [17] Fang Y, Chen Y J, Tian C G, et al. Flux and budget of BC in the continental shelf seas adjacent to Chinese high BC emission source regions [J]. Global Biogeochemical Cycles, 2015, 29(7): 957-972. doi: 10.1002/2014GB004985

    CrossRef Google Scholar

    [18] 方引. 渤黄海黑碳的区域地球化学行为[D]. 中国科学院烟台海岸带研究所博士学位论文, 2016

    Google Scholar

    FANG Yin. Regional geochemical behavior of black carbon in Bohai and Yellow Seas, China[D]. Doctor Dissertation of Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2016.

    Google Scholar

    [19] 方引, 陈颖军, 林田, 等. 莱州湾海岸带表层沉积物的黑碳及其与POPs的相关性研究[J]. 地球化学, 2014, 43(4):329-337

    Google Scholar

    FANG Yin, CHEN Yingjun, LIN Tian, et al. Distribution of black carbon and its correlation with persistent organic pollutants (POPs) in the surface sediments of coastal zone, Laizhou Bay [J]. Geochimica, 2014, 43(4): 329-337.

    Google Scholar

    [20] 林田, 方引, 陈颖军, 等. 东海内陆架沉积物中黑碳分布及其与持久性有机污染物的相关性研究[J]. 环境科学, 2012, 33(7):2335-2340

    Google Scholar

    LIN Tian, FANG Yin, CHEN Yingjun, et al. Distribution of black carbon in the surface sediments of the east China sea and their correlations with persistent organic pollutants [J]. Environmental Science, 2012, 33(7): 2335-2340.

    Google Scholar

    [21] 黄亮, 张国森, 吴莹, 等. 东海内陆架表层沉积物中黑碳的分布及来源[J]. 地球与环境, 2012, 40(1):63-69

    Google Scholar

    HUANG Liang, ZHANG Guosen, WU Ying, et al. Distribution and source of black carbon in the surface sediments of the inner continental shelf of the east China sea [J]. Earth and Environment, 2012, 40(1): 63-69.

    Google Scholar

    [22] Flores-Cervantes D X, Plata D L, MacFarlane J K, et al. Black carbon in marine particulate organic carbon: Inputs and cycling of highly recalcitrant organic carbon in the Gulf of Maine [J]. Marine Chemistry, 2009, 113(3-4): 172-181. doi: 10.1016/j.marchem.2009.01.012

    CrossRef Google Scholar

    [23] Elmquist M, Semiletov I, Guo L D, et al. Pan-Arctic patterns in black carbon sources and fluvial discharges deduced from radiocarbon and PAH source apportionment markers in estuarine surface sediments [J]. Global Biogeochemical Cycles, 2008, 22(2): GB2018.

    Google Scholar

    [24] Guo L D, Semiletov I, Gustafsson Ö, et al. Characterization of Siberian Arctic coastal sediments: implications for terrestrial organic carbon export [J]. Global Biogeochemical Cycles, 2004, 18(1): GB1036.

    Google Scholar

    [25] Running S W. Is global warming causing more, larger wildfires? [J]. Science, 2006, 313(5789): 927-928. doi: 10.1126/science.1130370

    CrossRef Google Scholar

    [26] Peterson B J, Holmes R M, Mcclelland J W, et al. Increasing river discharge to the arctic ocean [J]. Science, 2002, 298(5601): 2171-2173. doi: 10.1126/science.1077445

    CrossRef Google Scholar

    [27] Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: faster than forecast [J]. Geophysical Research Letters, 2007, 34(9): L09501.

    Google Scholar

    [28] Bröder L, Andersson A, Tesi T, et al. Quantifying degradative loss of terrigenous organic carbon in surface sediments across the Laptev and East Siberian Sea [J]. Global Biogeochemical Cycles, 2019, 33(1): 85-99. doi: 10.1029/2018GB005967

    CrossRef Google Scholar

    [29] Stuecker M F, Bitz C M, Armour K C, et al. Polar amplification dominated by local forcing and feedbacks [J]. Nature Climate Change, 2018, 8(12): 1076-1081. doi: 10.1038/s41558-018-0339-y

    CrossRef Google Scholar

    [30] Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification [J]. Nature, 2010, 464(7293): 1334-1337. doi: 10.1038/nature09051

    CrossRef Google Scholar

    [31] 张廷军. 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012, 32(1):27-38 doi: 10.3969/j.issn.1001-7410.2012.01.03

    CrossRef Google Scholar

    ZHANG Tingjun. Progress in global permafrost and climate change studies [J]. Quaternary Sciences, 2012, 32(1): 27-38. doi: 10.3969/j.issn.1001-7410.2012.01.03

    CrossRef Google Scholar

    [32] Lim S, Lee M, Lee G, et al. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC superstation and their ratios as source signature [J]. Atmospheric Chemistry and Physics, 2012, 12(4): 2007-2024. doi: 10.5194/acp-12-2007-2012

    CrossRef Google Scholar

    [33] Soja A J, Tchebakova N M, N. H. F. French N H F, et al. Climate-induced boreal forest change: Predictions versus current observations [J]. Global Planet. Change, 2007, 56(3-4): 274-296. doi: 10.1016/j.gloplacha.2006.07.028

    CrossRef Google Scholar

    [34] Myers-Pigg A N, Louchouarn P, Amon R M W, et al. Labile pyrogenic dissolved organic carbon in major Siberian Arctic rivers: implications for wildfire-stream metabolic linkages [J]. Geophysical Research Letters, 2015, 42(2): 377-385. doi: 10.1002/2014GL062762

    CrossRef Google Scholar

    [35] Turetsky M R, Benscoter B, Page S, et al. Global vulnerability of peatlands to fire and carbon loss [J]. Nature Geoscience, 2015, 8(1): 11-14. doi: 10.1038/ngeo2325

    CrossRef Google Scholar

    [36] Yang W F, Guo L D. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves [J]. Continental Shelf Research, 2018, 155: 1-10. doi: 10.1016/j.csr.2018.01.008

    CrossRef Google Scholar

    [37] Winiger P, Andersson A, Eckhardt S, et al. Siberian Arctic black carbon sources constrained by model and observation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): E1054-E1061.

    Google Scholar

    [38] Goldberg E D. Black Carbon in the Environment[M]. New York: John Wiley, 1985.

    Google Scholar

    [39] Hammes K, Schmidt M W I, Smernik R J, et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere [J]. Global Biogeochemical Cycles, 2007, 21(3): GB3016.

    Google Scholar

    [40] Elmquist M, Cornelissen G, Kukulska Z, et al. Distinct oxidative stabilities of char versus soot black carbon: Implications for quantification and environmental recalcitrance [J]. Global Biogeochemical Cycles, 2006, 20(2): GB2009.

    Google Scholar

    [41] Rein G, Cohen S, Simeoni A. Carbon emissions from smouldering peat in shallow and strong fronts [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2489-2496. doi: 10.1016/j.proci.2008.07.008

    CrossRef Google Scholar

    [42] Rodionov A, Amelung W, Haumaier L, et al. Black carbon in the zonal steppe soils of Russia [J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3): 363-369. doi: 10.1002/jpln.200521813

    CrossRef Google Scholar

    [43] Stein R, Macdonald R W. The Organic Carbon Cycle in the Arctic Ocean[M]. Berlin: Springer, 2004: 315-322.

    Google Scholar

    [44] 胡利民, 石学法, 叶君, 等. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10):1073-1086 doi: 10.11867/j.issn.1001-8166.2020.086

    CrossRef Google Scholar

    HU Limin, SHI Xuefa, YE Jun, et al. Advances in the sources and sink of sedimentary organic carbon in the East Siberian Arctic Shelf [J]. Advances in Earth Science, 2020, 35(10): 1073-1086. doi: 10.11867/j.issn.1001-8166.2020.086

    CrossRef Google Scholar

    [45] 陈建芳, 张海生, 金海燕, 等. 北极陆架沉积碳埋藏及其在全球碳循环中的作用[J]. 极地研究, 2004, 16(3):193-201

    Google Scholar

    CHEN Jianfang, ZHANG Haisheng, JIN Haiyan, et al. Accumulation of sedimentary organic carbon in the Arctic shelves and its significance on global carbon budget [J]. Chinese Journal of Polar Research, 2004, 16(3): 193-201.

    Google Scholar

    [46] Günther F, Overduin P P, Sandakov A V, et al. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region [J]. Biogeosciences, 2013, 10(6): 4297-4318. doi: 10.5194/bg-10-4297-2013

    CrossRef Google Scholar

    [47] Schirrmeister L, Kunitsky V, Grosse G, et al. Sedimentary characteristics and origin of the late Pleistocene ice complex on north-east Siberian Arctic coastal lowlands and islands-a review [J]. Quaternary International, 2011, 241(1-2): 3-25. doi: 10.1016/j.quaint.2010.04.004

    CrossRef Google Scholar

    [48] Semiletov I P, Savelieva N I, Weller G E, et al. The dispersion of Siberian River flows into coastal waters: Meteorological, hydrological and hydrochemical aspects[M]//Lewis E L, Jones E P, Lemke P, et al. The Freshwater Budget of the Arctic Ocean. Dordrecht: Springer, 2000: 323-366.

    Google Scholar

    [49] Karlsson E S, Charkin A, Dudarev O, et al. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea [J]. Biogeosciences, 2011, 8(7): 1865-1879. doi: 10.5194/bg-8-1865-2011

    CrossRef Google Scholar

    [50] Semiletov I, Dudarev O, Luchin V, et al. The east Siberian sea as a transition zone between Pacific-derived waters and Arctic shelf waters [J]. Geophysical Research Letters, 2005, 32(10): L10614. doi: 10.1029/2005GL022490

    CrossRef Google Scholar

    [51] Xu F L, Jin H Y, Ji Z Q, et al. Sources and distribution of sedimentary organic matter along the northern Bering and Chukchi Seas [J]. Journal of Environmental Sciences, 2017, 52: 66-75. doi: 10.1016/j.jes.2016.04.003

    CrossRef Google Scholar

    [52] Shimada K, Kamoshida T, Itoh M, et al. Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean [J]. Geophysical Research Letters, 2006, 33(8): L08605.

    Google Scholar

    [53] Han Y M, Cao J J, An Z S, et al. Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments [J]. Chemosphere, 2007, 69(4): 526-533. doi: 10.1016/j.chemosphere.2007.03.035

    CrossRef Google Scholar

    [54] Han Y M, Cao J J, Chow J C, et al. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC [J]. Chemosphere, 2007, 69(4): 569-574. doi: 10.1016/j.chemosphere.2007.03.024

    CrossRef Google Scholar

    [55] Han Y M, Bandowe B A M, Wei C, et al. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments [J]. Chemosphere, 2015, 119: 1335-1345. doi: 10.1016/j.chemosphere.2014.02.021

    CrossRef Google Scholar

    [56] 李秋玲, 乔淑卿, 石学法, 等. 北极东西伯利亚陆架沉积物物源: 来自黏土矿物和化学元素的证据[J]. 海洋学报, 2021, 43(3):76-89

    Google Scholar

    LI Qiuling, QIAO Shuqing, SHI Xuefa, et al. Sediment provenance of the East Siberian Arctic Shelf: evidence from clay minerals and chemical elements [J]. Haiyang Xuebao, 2021, 43(3): 76-89.

    Google Scholar

    [57] Hu L M, Shi X F, Guo Z G, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing [J]. Marine Geology, 2013, 335: 52-63. doi: 10.1016/j.margeo.2012.10.008

    CrossRef Google Scholar

    [58] Yao P, Zhao B, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation [J]. Continental Shelf Research, 2014, 91: 1-11. doi: 10.1016/j.csr.2014.08.010

    CrossRef Google Scholar

    [59] 韩永明, 曹军骥, 金章东, 等. 岱海与太湖沉积物焦碳和烟炱最近200年历史对比研究[J]. 第四纪研究, 2010, 30(3):550-558 doi: 10.3969/j.issn.1001-7410.2010.03.13

    CrossRef Google Scholar

    HAN Yongming, CAO Junji, JIN Zhangdong, et al. Comparison of char and soot variations in sediments from lakes Daihai and Taihu [J]. Quaternary Sciences, 2010, 30(3): 550-558. doi: 10.3969/j.issn.1001-7410.2010.03.13

    CrossRef Google Scholar

    [60] Gustafsson Ö, Haghseta F, Chan C, et al. Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability [J]. Environmental Science & Technology, 1996, 31(1): 203-209.

    Google Scholar

    [61] Karlsson E S, Brüchert V, Tesi T, et al. Contrasting regimes for organic matter degradation in the East Siberian Sea and the Laptev Sea assessed through microbial incubations and molecular markers [J]. Marine Chemistry, 2015, 170: 11-22. doi: 10.1016/j.marchem.2014.12.005

    CrossRef Google Scholar

    [62] Gordeev V V, Martin J M, Sidorov I S, et al. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean [J]. Am. J. Sci, 1996, 296: 664-691,1996. doi: 10.2475/ajs.296.6.664

    CrossRef Google Scholar

    [63] 李宏亮, 陈建芳, 金海燕, 等. 楚科奇海表层沉积物的生源组分及其对碳埋藏的指示意义[J]. 海洋学报, 2008, 30(1):165-171

    Google Scholar

    LI Hongliang, CHEN Jianfang, JIN Haiyan, et al. Biogenic constituents of surface sediments in the Chukchi Sea: implications for organic carbon burying efficiency [J]. Acta Oceanologica Sinica, 2008, 30(1): 165-171.

    Google Scholar

    [64] Lara R J, Rachold V, Kattner G, et al. Dissolved organic matter and nutrients in the Lena River, Siberian Arctic: Characteristics and distribution [J]. Marine Chemistry, 1998, 59(3-4): 301-309. doi: 10.1016/S0304-4203(97)00076-5

    CrossRef Google Scholar

    [65] Boucsein B, Fahl K, Stein R, et al. Variability of river discharge and Atlantic-water inflow at the Laptev Sea continental margin during the past 15, 000 years: Implications from maceral and biomarker records [J]. International Journal of Earth Sciences, 2000, 89(3): 578-591. doi: 10.1007/s005310000111

    CrossRef Google Scholar

    [66] Bröder L, Tesi T, Salvadó J A, et al. Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior [J]. Biogeosciences, 2016, 13(17): 5003-5019. doi: 10.5194/bg-13-5003-2016

    CrossRef Google Scholar

    [67] Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean? [J]. Organic Geochemistry, 1997, 27(5-6): 195-212. doi: 10.1016/S0146-6380(97)00066-1

    CrossRef Google Scholar

    [68] Dethleff D, Kuhlmann G. Fram Strait sea-ice sediment provinces based on silt and clay compositions identify Siberian Kara and Laptev Seas as main source regions [J]. Polar Research, 2010, 29(3): 265-282. doi: 10.1111/j.1751-8369.2010.00149.x

    CrossRef Google Scholar

    [69] 叶君, 胡利民, 石学法, 等. 基于木质素示踪北极东西伯利亚陆架沉积有机碳的来源、输运与埋藏[J]. 第四纪研究, 2021, 41(3):752-765 doi: 10.11928/j.issn.1001-7410.2021.03.11

    CrossRef Google Scholar

    YE Jun, HU Limin, SHI Xuefa, et al. Sources, transport and burial of terrestrial organic carbon in the surface sediments across the East Siberian Arctic shelf, insights from lignin [J]. Quaternary Sciences, 2021, 41(3): 752-765. doi: 10.11928/j.issn.1001-7410.2021.03.11

    CrossRef Google Scholar

    [70] 陈立奇, 高众勇, 杨绪林, 等. 北极地区碳循环研究意义和展望[J]. 极地研究, 2004, 16(3):171-180

    Google Scholar

    CHEN Liqi, GAO Zhongyong, YANG Xulin, et al. Prospects of research on carbon cycle in the arctic [J]. Chinese Journal of Polar Research, 2004, 16(3): 171-180.

    Google Scholar

    [71] Fang Z M, Yang W F, Chen M, et al. Abundance and sinking of particulate black carbon in the western Arctic and Subarctic Oceans [J]. Scientific Reports, 2016, 6(1): 29959. doi: 10.1038/srep29959

    CrossRef Google Scholar

    [72] Kozlov V S, Panchenko M V, Yausheva E P. Mass fraction of black carbon in submicron aerosol as an indicator of influence of smoke from remote forest fires in Siberia [J]. Atmospheric Environment, 2008, 42(11): 2611-2620. doi: 10.1016/j.atmosenv.2007.07.036

    CrossRef Google Scholar

    [73] Huang X Y, Rein G. Smouldering combustion of peat in wildfires: inverse modelling of the drying and the thermal and oxidative decomposition kinetics [J]. Combustion and Flame, 2014, 161(6): 1633-1644. doi: 10.1016/j.combustflame.2013.12.013

    CrossRef Google Scholar

    [74] Hugelius G, Loisel J, Chadburn S, et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(34): 20438-20446. doi: 10.1073/pnas.1916387117

    CrossRef Google Scholar

    [75] Kharuk V I, Ranson K J, Dvinskaya M L, et al. Wildfires in northern Siberian larch dominated communities [J]. Environmental Research Letters, 2011, 6(4): 045208. doi: 10.1088/1748-9326/6/4/045208

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(2054) PDF downloads(144) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint