2022 Vol. 42, No. 4
Article Contents

WAN Xia, ZHANG Hailong, XIAO Xiaotong. Review of organic carbon source and burial in polar fjords[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 73-83. doi: 10.16562/j.cnki.0256-1492.2022021401
Citation: WAN Xia, ZHANG Hailong, XIAO Xiaotong. Review of organic carbon source and burial in polar fjords[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 73-83. doi: 10.16562/j.cnki.0256-1492.2022021401

Review of organic carbon source and burial in polar fjords

More Information
  • Fjords are an important interface between the open ocean and terrestrial ecosystems. In the context of global climate change, the biogeochemical processes in fjords are undergoing dramatic changes. The special topography and biogeochemical properties of fjord make it an important ecosystem for organic carbon (OC) burial and storage. Studies have shown that the average OC accumulation rate in the global fjords is as high as 54 gC·m−2·a−1, and the OC burial amount is 18×1012 gC·a−1, taking about 11% of the annual global marine OC burial and showing a great carbon storage potential. The input, composition, and accumulation or burial of sedimentary OC in polar fjords are different from those in temperate fjords due to glaciation. There are spatial differences in the source, composition, accumulation, and burial rate of sedimentary OC within and between polar fjords. Within a fjord, there is a gradient change from the front of the fjord to the mouth of the fjord; and between fjords, those with glaciers have higher carbon accumulation rates than those without glaciers. In addition, the composition of sedimentary OC varies due to the influence of different freshwater and seawater inputs. Clarifying the sources of fjord sediment OC is crucial to understanding fjord OC burial. Quantitative estimation of OC from different sources can be achieved by measuring total OC and radiocarbon isotopes of bulk organic matter and the technology of Compound-Specific Radiocarbon Analysis (CSRA). The accumulation or burial of OC in polar fjords shows different characteristics due to the rapid retreating of glaciers by global warming. Global warming is causing rapid glaciers to melt, causing polar fjords to exhibit different organic carbon accumulation or burial characteristics. In the global carbon cycle, it is increasingly important to study whether the ability of polar fjords to capture and bury OC can adapt to global climate change.

  • 加载中
  • [1] Syvitski P M, Burrell D C, Skei J M. Fjords. Processes and Products[M]. New York: Springer, 1987: 3-377.

    Google Scholar

    [2] Syvitski J P M, Shaw J. Sedimentology and geomorphology of fjords [J]. Developments in Sedimentology, 1995, 53: 113-178.

    Google Scholar

    [3] Bianchi T S, Arndt S, Austin W E N, et al. Fjords as aquatic critical zones (ACZs) [J]. Earth-Science Reviews, 2020, 203: 103145. doi: 10.1016/j.earscirev.2020.103145

    CrossRef Google Scholar

    [4] Smith R W, Bianchi T S, Allison M, et al. High rates of organic carbon burial in fjord sediments globally [J]. Nature Geoscience, 2015, 8(6): 450-453. doi: 10.1038/ngeo2421

    CrossRef Google Scholar

    [5] Smeaton C, Yang H D, Austin W E N. Carbon burial in the mid-latitude fjords of Scotland [J]. Marine Geology, 2021, 441: 106618. doi: 10.1016/j.margeo.2021.106618

    CrossRef Google Scholar

    [6] 胡利民, 石学法, 刘焱光, 等. 白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录[J]. 海洋地质与第四纪地质, 2015, 35(3):37-47

    Google Scholar

    HU Limin, SHI Xuefa, LIU Yanguang, et al. Geochemical characteristics and burial records of organic carbon in the column sediments from Western Bering sea [J]. Marine Geology & Quaternary Geology, 2015, 35(3): 37-47.

    Google Scholar

    [7] Lee C. Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems [J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3323-3335. doi: 10.1016/0016-7037(92)90308-6

    CrossRef Google Scholar

    [8] Moossen H, Abell R, Quillmann U, et al. Holocene changes in marine productivity and terrestrial organic carbon inputs into an Icelandic fjord: Application of molecular and bulk organic proxies [J]. The Holocene, 2013, 23(12): 1699-1710. doi: 10.1177/0959683613505346

    CrossRef Google Scholar

    [9] Nuwer J M, Keil R G. Sedimentary organic matter geochemistry of Clayoquot Sound, Vancouver Island, British Columbia [J]. Limnology and Oceanography, 2005, 50(4): 1119-1128. doi: 10.4319/lo.2005.50.4.1119

    CrossRef Google Scholar

    [10] Gilbert R. Environmental assessment from the sedimentary record of high-latitude fiords [J]. Geomorphology, 2000, 32(3-4): 295-314. doi: 10.1016/S0169-555X(99)00101-4

    CrossRef Google Scholar

    [11] Howe J A, Austin W E N, Forwick M, et al. Fjord systems and archives: a review[M]//Howe J A, Austin W E N, Forwick M, et al. Fjord Systems and Archives. London: Geological Society of London, 2010, 344: 5-15.

    Google Scholar

    [12] Berg S, Jivcov S, Kusch S, et al. Increased petrogenic and biospheric organic carbon burial in sub-Antarctic fjord sediments in response to recent glacier retreat [J]. Limnology and Oceanography, 2021, 66(12): 4347-4362. doi: 10.1002/lno.11965

    CrossRef Google Scholar

    [13] Zwerschke N, Sands C J, Roman-Gonzalez A, et al. Quantification of blue carbon pathways contributing to negative feedback on climate change following glacier retreat in West Antarctic fjords [J]. Global Change Biology, 2021, 28(1): 8-20.

    Google Scholar

    [14] Faust J C, Knies J. Organic matter sources in North Atlantic fjord sediments [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(6): 2872-2885. doi: 10.1029/2019GC008382

    CrossRef Google Scholar

    [15] Cui X Q, Bianchi T S, Jaeger J M, et al. Biospheric and petrogenic organic carbon flux along southeast Alaska [J]. Earth and Planetary Science Letters, 2016, 452: 238-246. doi: 10.1016/j.jpgl.2016.08.002

    CrossRef Google Scholar

    [16] Galy V, Peucker-Ehrenbrink B, Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion [J]. Nature, 2015, 521(7551): 204-207. doi: 10.1038/nature14400

    CrossRef Google Scholar

    [17] Kim J H, Peterse F, Willmott V, et al. Large ancient organic matter contributions to Arctic marine sediments (Svalbard) [J]. Limnology and Oceanography, 2011, 56(4): 1463-1474. doi: 10.4319/lo.2011.56.4.1463

    CrossRef Google Scholar

    [18] Kumar V, Tiwari M, Nagoji S, et al. Evidence of Anomalously Low δ13C of Marine Organic Matter in an Arctic Fjord [J]. Scientific Reports, 2016, 6: 36192. doi: 10.1038/srep36192

    CrossRef Google Scholar

    [19] Cui X Q, Bianchi T S, Savage C, et al. Organic carbon burial in fjords: Terrestrial versus marine inputs [J]. Earth and Planetary Science Letters, 2016, 451: 41-50. doi: 10.1016/j.jpgl.2016.07.003

    CrossRef Google Scholar

    [20] Kusch S, Rethemeyer J, Ransby D, et al. Permafrost organic carbon turnover and export into a high-Arctic fjord: a case study from Svalbard using compound-specific 14C analysis [J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(3): e2020JG006008.

    Google Scholar

    [21] Carr J R, Stokes C, Vieli A. Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions [J]. Journal of Glaciology, 2014, 60(219): 155-170. doi: 10.3189/2014JoG13J122

    CrossRef Google Scholar

    [22] Jørgensen B B, Laufer K, Michaud A B, et al. Biogeochemistry and microbiology of high Arctic marine sediment ecosystems-Case study of Svalbard fjords [J]. Limnology and Oceanography, 2020, 66(S1): S273-S292.

    Google Scholar

    [23] Zaborska A, Włodarska-Kowalczuk M, Legeżyńska J, et al. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords-Signs of maturing of Arctic fjordic systems? [J]. Journal of Marine Systems, 2018, 180: 112-123. doi: 10.1016/j.jmarsys.2016.11.005

    CrossRef Google Scholar

    [24] Włodarska-Kowalczuk M, Mazurkiewicz M, Górska B, et al. Organic carbon origin, benthic faunal consumption, and burial in sediments of Northern Atlantic and arctic fjords (60-81°N) [J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(12): 3737-3751. doi: 10.1029/2019JG005140

    CrossRef Google Scholar

    [25] Eidam E F, Nittrouer C A, Lundesgaard Ø, et al. Variability of sediment accumulation rates in an Antarctic fjord [J]. Geophysical Research Letters, 2019, 46(22): 13271-13280. doi: 10.1029/2019GL084499

    CrossRef Google Scholar

    [26] Koziorowska K, Kuliński K, Pempkowiak J. Sedimentary organic matter in two Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition [J]. Continental Shelf Research, 2016, 113: 38-46. doi: 10.1016/j.csr.2015.11.010

    CrossRef Google Scholar

    [27] Kim H, Kwon S Y, Lee K, et al. Input of terrestrial organic matter linked to deglaciation increased mercury transport to the Svalbard fjords [J]. Scientific Reports, 2020, 10(1). doi: 10.1038/s41598-020-60261-6

    CrossRef Google Scholar

    [28] Svendsen H, Beszczynska-Møller A, Hagen J O, et al. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard [J]. Polar Research, 2002, 21(1): 133-166.

    Google Scholar

    [29] Bourgeois S, Kerhervé P, Calleja M L, et al. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard) [J]. Journal of Marine Systems, 2016, 164: 112-127. doi: 10.1016/j.jmarsys.2016.08.009

    CrossRef Google Scholar

    [30] Munoz Y P, Wellner J S. Local controls on sediment accumulation and distribution in a fjord in the West Antarctic Peninsula: implications for palaeoenvironmental interpretations [J]. Polar Research, 2016, 35(1): 25284. doi: 10.3402/polar.v35.25284

    CrossRef Google Scholar

    [31] Hopwood M J, Carroll D, Dunse T, et al. Review Article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? [J]. The Cryosphere, 2020, 14(4): 1347-1383. doi: 10.5194/tc-14-1347-2020

    CrossRef Google Scholar

    [32] Szeligowska M, Trudnowska E, Boehnke R, et al. The interplay between plankton and particles in the Isfjorden waters influenced by marine- and land-terminating glaciers [J]. Science of the Total Environment, 2021, 780: 146491. doi: 10.1016/j.scitotenv.2021.146491

    CrossRef Google Scholar

    [33] Vonnahme T R, Persson E, Dietrich U, et al. Early spring subglacial discharge plumes fuel under-ice primary production at a Svalbard tidewater glacier [J]. The Cryosphere, 2021, 15(4): 2083-2107. doi: 10.5194/tc-15-2083-2021

    CrossRef Google Scholar

    [34] Kumar V, Tiwari M, Rengarajan R. Warming in the Arctic captured by productivity variability at an Arctic fjord over the past two centuries [J]. PLoS One, 2018, 13(8): e0201456. doi: 10.1371/journal.pone.0201456

    CrossRef Google Scholar

    [35] Torsvik T, Albretsen J, Sundfjord A, et al. Impact of tidewater glacier retreat on the fjord system: modeling present and future circulation in Kongsfjorden, Svalbard [J]. Estuarine, Coastal and Shelf Science, 2019, 220: 152-165. doi: 10.1016/j.ecss.2019.02.005

    CrossRef Google Scholar

    [36] Carroll D, Sutherland D A, Hudson B, et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords [J]. Geophysical Research Letters, 2016, 43(18): 9739-9748. doi: 10.1002/2016GL070170

    CrossRef Google Scholar

    [37] Kanna N, Sugiyama S, Ohashi Y, et al. Upwelling of macronutrients and dissolved inorganic carbon by a subglacial freshwater driven plume in Bowdoin fjord, northwestern Greenland [J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(5): 1666-1682. doi: 10.1029/2017JG004248

    CrossRef Google Scholar

    [38] Meire L, Mortensen J, Meire P, et al. Marine-terminating glaciers sustain high productivity in Greenland fjords [J]. Global Change Biology, 2017, 23(12): 5344-5357. doi: 10.1111/gcb.13801

    CrossRef Google Scholar

    [39] Hopwood M J, Carroll D, Browning T J, et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland [J]. Nature Communications, 2018, 9(1): 3256. doi: 10.1038/s41467-018-05488-8

    CrossRef Google Scholar

    [40] Schlosser C, Schmidt K, Aquilina A, et al. Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean [J]. Biogeosciences, 2018, 15(16): 4973-4993. doi: 10.5194/bg-15-4973-2018

    CrossRef Google Scholar

    [41] Pabortsava K, Lampitt R S, Benson J, et al. Carbon sequestration in the deep Atlantic enhanced by Saharan dust [J]. Nature Geoscience, 2017, 10(3): 189-194. doi: 10.1038/ngeo2899

    CrossRef Google Scholar

    [42] Cui X Q, Bianchi T S, Savage C. Erosion of modern terrestrial organic matter as a major component of sediments in fjords [J]. Geophysical Research Letters, 2017, 44(3): 1457-1465. doi: 10.1002/2016GL072260

    CrossRef Google Scholar

    [43] Walinsky S E, Prahl F G, Mix A C, et al. Distribution and composition of organic matter in surface sediments of coastal Southeast Alaska [J]. Continental Shelf Research, 2009, 29(13): 1565-1579. doi: 10.1016/j.csr.2009.04.006

    CrossRef Google Scholar

    [44] Syvitski J P M. Glaciomarine environments in Canada: an overview [J]. Canadian Journal of Earth Sciences, 1993, 30(2): 354-371. doi: 10.1139/e93-027

    CrossRef Google Scholar

    [45] Boldt K V. Fjord sedimentation during the rapid retreat of tidewater glaciers: observations and modeling[D]. Doctor Dissertation of University of Washington, 2014.

    Google Scholar

    [46] Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time [J]. Global and Planetary Change, 1989, 1(1-2): 97-122. doi: 10.1016/0921-8181(89)90018-0

    CrossRef Google Scholar

    [47] Salvadó J A, Tesi T, Andersson A, et al. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf [J]. Geophysical Research Letters, 2015, 42(19): 8122-8130. doi: 10.1002/2015GL066058

    CrossRef Google Scholar

    [48] Bianchi T S, Schreiner K M, Smith R W, et al. Redox effects on organic matter storage in coastal sediments during the Holocene: a biomarker/proxy perspective [J]. Annual Review of Earth and Planetary Sciences, 2016, 44(1): 295-319. doi: 10.1146/annurev-earth-060614-105417

    CrossRef Google Scholar

    [49] Smeaton C, Austin W E N, Davies A L, et al. Substantial stores of sedimentary carbon held in mid-latitude fjords [J]. Biogeosciences, 2016, 13(20): 5771-5787. doi: 10.5194/bg-13-5771-2016

    CrossRef Google Scholar

    [50] Smeaton C, Cui X Q, Bianchi T S, et al. The evolution of a coastal carbon store over the last millennium [J]. Quaternary Science Reviews, 2021, 266: 107081. doi: 10.1016/j.quascirev.2021.107081

    CrossRef Google Scholar

    [51] Zimov S A, Davydov S P, Zimova G M, et al. Permafrost carbon: Stock and decomposability of a globally significant carbon pool [J]. Geophysical Research Letters, 2006, 33(20): L20502. doi: 10.1029/2006GL027484

    CrossRef Google Scholar

    [52] Winterfeld M, Goñi M A, Just J, et al. Characterization of particulate organic matter in the Lena River delta and adjacent nearshore zone, NE Siberia-Part 2: Lignin-derived phenol compositions [J]. Biogeosciences, 2015, 12(7): 2261-2283. doi: 10.5194/bg-12-2261-2015

    CrossRef Google Scholar

    [53] Hage S, Galy V V, Cartigny M J B, et al. Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits [J]. Geology, 2020, 48(9): 882-887. doi: 10.1130/G47320.1

    CrossRef Google Scholar

    [54] Eglinton T I, Benitez-Nelson B C, Pearson A, et al. Variability in radiocarbon ages of individual organic compounds from marine sediments [J]. Science, 1997, 277(5327): 796-799. doi: 10.1126/science.277.5327.796

    CrossRef Google Scholar

    [55] Yu M, Eglinton T I, Haghipour N, et al. Contrasting fates of terrestrial organic carbon pools in marginal sea sediments [J]. Geochimica et Cosmochimica Acta, 2021, 309: 16-30. doi: 10.1016/j.gca.2021.06.018

    CrossRef Google Scholar

    [56] Feng X J, Vonk J E, Van Dongen B E, et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 14168-14173. doi: 10.1073/pnas.1307031110

    CrossRef Google Scholar

    [57] Meyer V D, Hefter J, Köhler P, et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming [J]. Environmental Research Letters, 2019, 14(8): 085003. doi: 10.1088/1748-9326/ab2653

    CrossRef Google Scholar

    [58] Holding J M, Duarte C M, Sanz-Martín M, et al. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean [J]. Nature Climate Change, 2015, 5(12): 1079-1082. doi: 10.1038/nclimate2768

    CrossRef Google Scholar

    [59] 陈漪馨, 刘焱光, 姚政权, 等. 末次盛冰期以来挪威海北部陆源物质输入对气候变化的响应[J]. 海洋地质与第四纪地质, 2015, 35(3):95-108

    Google Scholar

    CHEN Yixin, LIU Yanguang, YAO Zhengquan, et al. Response of terrigenous input to the climatic changes of Northern Norwegian sea since the last glacial maximum [J]. Marine Geology & Quaternary Geology, 2015, 35(3): 95-108.

    Google Scholar

    [60] Winkelmann D, Knies J. Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(9): Q09012.

    Google Scholar

    [61] Milner A M, Khamis K, Battin T J, et al. Glacier shrinkage driving global changes in downstream systems [J]. Proceedings of the National Academy of Sciences, 2017, 114(37): 9770-9778. doi: 10.1073/pnas.1619807114

    CrossRef Google Scholar

    [62] Normandeau A, Dietrich P, Clarke J H, et al. Retreat pattern of glaciers controls the occurrence of turbidity currents on high-latitude fjord deltas (Eastern Baffin Island) [J]. Journal of Geophysical Research: Earth Surface, 2019, 124(6): 1559-1571. doi: 10.1029/2018JF004970

    CrossRef Google Scholar

    [63] Zajączkowski M. Sediment supply and fluxes in glacial and outwash fjords, Kongsfjorden and Adventfjorden, Svalbard [J]. Polish Polar Research, 2008, 29(1): 59-72.

    Google Scholar

    [64] Weydmann-Zwolicka A, Prątnicka P, Łącka M, et al. Zooplankton and sediment fluxes in two contrasting fjords reveal Atlantification of the Arctic [J]. Science of the Total Environment, 2021, 773: 145599. doi: 10.1016/j.scitotenv.2021.145599

    CrossRef Google Scholar

    [65] Zajączkowski M, Nygård H, Hegseth E N, et al. Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006-2007 [J]. Polar Biology, 2010, 33(2): 223-239. doi: 10.1007/s00300-009-0699-x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(2777) PDF downloads(150) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint