Citation: | LUO Shuaibing, ZHANG Li, XU Guoqiang, WANG Xiaoxue, LEI Zhenyu, YU Qiuhua, SHUAI Qingwei. The characteristics of the system domain and the stratigraphic framework of the Beikang-Zengmu Basin since the Middle Miocene[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 111-122. doi: 10.16562/j.cnki.0256-1492.2021113003 |
With the development of sequence stratigraphy, it has been widely used in all stages of oil-gas exploration, using sequence stratigraphy to study relative sea level change, sequence stratigraphic framework and sedimentary facies can provide guidance for favorable reservoir facies belt distribution, sand-body morphology and boundary characterization. In seismic data interpretation, analyzing seismic reflection termination relationships (onlap, downlap, toplap and so on), unconformities and depositional trends, fourteen third-order sequence interfaces have been identified in the Beikang-Zengmu basin since the Middle Miocene, respectively named SB1-SB14 and SB11, SB8 and SB1 corresponds to the Guangzhou Marine Geological Survey of T1, T2 and T3 reflection interface. By delineating the inner structure of sequence stratigraphy and restoring the original profile, and combining with the stratigraphic stacking method, in the sequence stratigraphic framework of Beikang-Zengmu Basin since the Middle Miocene, four genetic units have been divided into transgression, high normal regression, forced regression and low normal regression. By further studying the interior layer structure and facies distribution of the four genetic units, three sequence stratigraphic framework patterns since the Middle Miocene in the Beikang-Zengmu Basin were proposed, namely, sand-rich delta advance wedge at the shelf edge, regressive organic reef, and sand-rich mud-rich retreat wedge at the shelf edge. Among them, the supply of sediment source is sufficient and the accommodating space is reduced when there is less space, and the sand-rich delta wedge is developed, and the sand-bearing deep-water fan is developed in the shelf margin-slope-basin area. However, when the increment of accommodating space was much larger than the sediment supply, there were regressive organic reefs and sand-rich mud-rich sedimentation wedges, and sandy deep-water fans in the slope-basin area were underdeveloped.
[1] | Mitchum R M Jr, Vail P R, Sangree J B. Seismic stratigraphy and global changes of sea level, part 6: stratigraphic interpretation of seismic reflection patterns in depositional sequences[M]//Payton C E. Seismic Stratigraphy-Applications to Hydrocarbon Exploration. Tulsa: American Association of Petroleum Geologists, 1977: 135-144. |
[2] | Sangree J B, Widmier J M. Seismic interpretation of clastic facies to hydrocarbon exploration [J]. AAPG Mem, 1977, 26: 165-184. |
[3] | Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy. Part 1: Seismic stratigraphy interpretation procedure[M]//Bally A W. AAPG Studies in Geology #27, volume 1: Atlas of Seismic Stratigraphy. Tulsa: AAPG, 1987: 1-10. |
[4] | Galloway W E. Genetic stratigraphic sequences in basin analysis I: Architecture and genesis of flooding-surface bounded depositional units [J]. AAPG Bulletin, 1989, 73(2): 125-142. |
[5] | Galloway W E. Depositional processes, regime variables, and development of siliciclastic stratigraphic sequences[C]//Proceedings of the Norwegian Petroleum Society Conference. Stavanger, Norway: Norwegian Petroleum Society, 1998, 8: 117-140. |
[6] | Catuneanu O, Abreu V, Bhattacharya J P, et al. Towards the standardization of sequence stratigraphy [J]. Earth-Science Reviews, 2009, 92(1-2): 1-33. doi: 10.1016/j.earscirev.2008.10.003 |
[7] | Cross T A. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation[C]//Proceedings of Northwestern European Sequence Stratigraphy Congress, 1994: 105-123. |
[8] | Zecchin M, Catuneanu O. High-resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces [J]. Marine and Petroleum Geology, 2013, 39(1): 1-25. doi: 10.1016/j.marpetgeo.2012.08.015 |
[9] | 杨少坤, 黄丽芬, 李希宗, 等. 珠江口盆地特殊层序地层模式及其对勘探的指导意义[J]. 中国海上油气(地质), 1996, 10(3):137-152 YANG Shaokun, HUANG Lifen, LI Xizong, et al. Special sequentialstratigraphic pattern in the Pearl River Mouth Basin and its significance to exploration [J]. China Offshore Oil and Gas (Geology), 1996, 10(3): 137-152. |
[10] | 许仕策. 预测勘探目标中的层序地层学理论与实践: 以珠江口盆地为例[J]. 中国海上油气(地质), 1999, 13(3):137-152 XU Shice. Sequence stratigraphic theory and practice in exploration prospect prediction: examples from the Pearl River Mouth Basin [J]. China Offshore Oil and Gas (Geology), 1999, 13(3): 137-152. |
[11] | 庞雄, 陈长民, 施和生, 等. 相对海平面变化与南海珠江深水扇系统的响应[J]. 地学前缘, 2005, 12(3):167-177 doi: 10.3321/j.issn:1005-2321.2005.03.018 PANG Xiong, CHEN Changmin, SHI Hesheng, et al. Response between relative sea-level change and the Pearl River deep-water fan system in the South China Sea [J]. Earth Science Frontiers, 2005, 12(3): 167-177. doi: 10.3321/j.issn:1005-2321.2005.03.018 |
[12] | 柳保军, 庞雄, 颜承志, 等. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义[J]. 石油学报, 2011, 32(2):234-242 doi: 10.7623/syxb201102007 LIU Baojun, PANG Xiong, YAN Chengzhi, et al. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration [J]. Acta Petrolei Sinica, 2011, 32(2): 234-242. doi: 10.7623/syxb201102007 |
[13] | 秦国权. 微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用[J]. 海洋地质与第四纪地质, 1996, 16(4):1-18 QIN Guoquan. Aplication of Micropaleonology to the sequnence stratigraphic studies of Late Cenozoic in the Zhujiang River Mouth basin [J]. Marine Geology & Quaternary Geology, 1996, 16(4): 1-18. |
[14] | 黄虑生, 钟碧珍. 珠江口盆地渐新统-更新统钙质超微化石生物地层事件[J]. 石油学报, 1992, 13(2):170-177 doi: 10.7623/syxb199202029 HUANG Lvsheng, ZHONG Bizhen. Calcareous nannofossil bio-events in oligocenepleistocene in the Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 1992, 13(2): 170-177. doi: 10.7623/syxb199202029 |
[15] | 黄虑生. 珠江口盆地第三系生物地层框架[J]. 中国海上油气(地质), 1999, 13(6):406-415 HUANG Lvsheng. Tertiary biostratigraphic framework of Pearl River Mouth Basin [J]. China Offshore Oil and Gas (Geology), 1999, 13(6): 406-415. |
[16] | 姜仕军. 珠江口盆地PY27-2-1井高分辨率钙质超微生物地层和层序地层研究[J]. 中国海上油气(地质), 1999, 13(3):189-195 JIANG Shijun. High resolution calcareous nannofossil biostratigraphy and sequence stratigraphy of well PY27-2-1, Pearl River Mouth Basin [J]. China Offshore Oil and Gas (Geology), 1999, 13(3): 189-195. |
[17] | 邵磊, 李献华, 汪品先, 等. 南海渐新世以来构造演化的沉积记录-ODP1148站深海沉积物中的证据[J]. 地球科学进展, 2004, 19(4):539-544 doi: 10.3321/j.issn:1001-8166.2004.04.008 SHAO Lei, LI Xianhua, WANG Pinxian, et al. Sedimentary record of the tectonic evolution of the South China Sea since the Oligocene-Evidence from deep sea sediments of ODP Site 1148 [J]. Advances in Earth Science, 2004, 19(4): 539-544. doi: 10.3321/j.issn:1001-8166.2004.04.008 |
[18] | 姚永坚, 吴能友, 夏斌, 等. 南海南部海域曾母盆地油气地质特征[J]. 中国地质, 2008, 35(3):503-513 doi: 10.3969/j.issn.1000-3657.2008.03.015 YAO Yongjian, WU Nengyou, XIA Bin, et al. Petroleum geology of the Zengmu basin in the southern South China Sea [J]. Geology in China, 2008, 35(3): 503-513. doi: 10.3969/j.issn.1000-3657.2008.03.015 |
[19] | 姚伯初, 万玲, 刘振湖, 等. 南海南部海域新生代万安运动的构造意义及其油气资源效应[J]. 海洋地质与第四纪地质, 2004, 24(1):69-77 YAO Bochu, WAN Ling, LIU Zhenhu, et al. Tectonic significance and its petroleum effect of the Wan’an tectonic movement in the south of the South China Sea [J]. Marine Geology & Quaternary Geology, 2004, 24(1): 69-77. |
[20] | 金庆焕, 李唐根. 南沙海域区域地质构造[J]. 海洋地质与第四纪地质, 2000, 20(1):1-8 JIN Qinghuan, LI Tanggen. Regional geologic tectonics of the Nansha sea area [J]. Marine Geology & Quaternary Geology, 2000, 20(1): 1-8. |
[21] | 张翀, 吴世敏, 丘学林. 南海南部海区前陆盆地形成与演化[J]. 海洋地质与第四纪地质, 2007, 27(1):61-70 ZHANG Chong, WU Shimin, QIU Xuelin. Formation of foreland basins in the south of the South China Sea [J]. Marine Geology & Quaternary Geology, 2007, 27(1): 61-70. |
[22] | 周蒂, 孙珍, 杨少坤, 等. 南沙海区曾母盆地地层系统[J]. 地球科学—中国地质大学学报, 2011, 36(5):789-797 ZHOU Di, SUN Zhen, YANG Shaokun, et al. The stratigraphic system of the Zengmu Basin, Southern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2011, 36(5): 789-797. |
[23] | Cullen A B. Transverse segmentation of the Baram-Balabac Basin, NW Borneo: refining the model of Borneo’s tectonic evolution [J]. Petroleum Geoscience, 2010, 16(1): 3-29. doi: 10.1144/1354-079309-828 |
[24] | Madon M, Kim C L, Wong R. The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution [J]. Journal of Asian Earth Sciences, 2013, 76: 312-333. doi: 10.1016/j.jseaes.2013.04.040 |
[25] | Krebs W N. Upper Tertiary chronosequence stratigraphy of offshore Sabah and Sarawak, NW Borneo, Malaysia: A unified scheme based on graphic correlation [J]. Bulletin of the Geological Society of Malaysia, 2011, 57: 39-46. doi: 10.7186/bgsm57201106 |
[26] | Hutchison C S. Oroclines and paleomagnetism in Borneo and South-East Asia [J]. Tectonophysics, 2009, 496(1-4): 53-67. |
[27] | Steuer S, Franke D, Meresse F, et al. Oligocene-Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea [J]. Marine and Petroleum Geology, 2014, 58: 644-657. doi: 10.1016/j.marpetgeo.2013.12.010 |
[28] | Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic [J]. Science, 1987, 235(4793): 1156-1167. doi: 10.1126/science.235.4793.1156 |
[29] | Hunt D, Tucker M E. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level’fall [J]. Sedimentary Geology, 1992, 81(1-2): 1-9. doi: 10.1016/0037-0738(92)90052-S |
[30] | 梅冥相, 杨欣德. 强迫型海退及强迫型海退楔体系域: 对传统Exxon层序地层学模式的修正[J]. 地质科技情报, 2000, 19(2):17-21 MEI Mingxiang, YANG Xinde. Forced regression and forced regressive wedge system tract: revision on traditional Exxon model of sequence stratigraphy [J]. Geological Science and Technology Information, 2000, 19(2): 17-21. |
[31] | 施秋华, 万志峰, 夏斌. 婆罗洲地质构造特征及其对南海南部盆地的影响[J]. 海洋地质前沿, 2012, 29(1):11-16 SHI Qiuhua, WAN Zhifeng, XIA Bin. Geology of Borneo Block and its influence on basins of southern South China Sea [J]. Marine Geology Frontiers, 2012, 29(1): 11-16. |
[32] | 孙珍, 赵中贤, 周蒂, 等. 南沙海域盆地的地层系统与沉积结构[J]. 地球科学—中国地质大学学报, 2011, 36(5):798-806 SUN Zhen, ZHAO Zhongxian, ZHOU Di, et al. The stratigraphy and the sequence architecture of the Basins in Nansha Region [J]. Earth Science—Journal of China University of Geosciences, 2011, 36(5): 798-806. |
[33] | Hutchison C S. Marginal basin evolution: the southern South China Sea [J]. Marine and Petroleum Geology, 2004, 21(9): 1129-1148. doi: 10.1016/j.marpetgeo.2004.07.002 |
[34] | Cullen A, Reemst P, Henstra G, et al. Rifting of the South China Sea: new perspectives [J]. Petroleum Geoscience, 2010, 16(3): 273-282. doi: 10.1144/1354-079309-908 |
[35] | 杜文波, 黄文凯, 朱红涛, 等. 台湾海峡西部海域沉积体系、地层架构与油气勘探前景[J]. 中国地质, 2020, 47(5):1542-1553 DU Wenbo, HUANG Wenkai, ZHU Hongtao, et al. Sedimentary system, stratigraphic architecture and petroleum exploration prospect analysis in the western Taiwan Strait [J]. Geology in China, 2020, 47(5): 1542-1553. |
The tectonic zoning of Beikang basin
The main reflectance termination relation of sequence interface in Beikang-Zengmu basin
Sequence stratigraphic interface since middle Miocene in Beikang-Zengmu basin
The four typical genetic element style characteristics of system tract[6]
The section characteristics of BB´ sequence stratigraphic framework
The sand-rich delta wedge sequence stratigraphic framework at shelf edge
The sand-rich delta wedge sequence stratigraphic patten at shelf edge
The regressive organic reef sequence stratigraphic patten
The sand-rich and mud-rich sedimentary wedge sequence stratigraphic patten at shelf edge