2022 Vol. 42, No. 1
Article Contents

LONG Yating, YU Kefu, WANG Rui, MA Yifang, JIANG Wei, FAN Tianlai, ZHANG Yu, XU Shendong. Development of coral reefs around Weizhou Island and its bearing on climate[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 184-193. doi: 10.16562/j.cnki.0256-1492.2021103101
Citation: LONG Yating, YU Kefu, WANG Rui, MA Yifang, JIANG Wei, FAN Tianlai, ZHANG Yu, XU Shendong. Development of coral reefs around Weizhou Island and its bearing on climate[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 184-193. doi: 10.16562/j.cnki.0256-1492.2021103101

Development of coral reefs around Weizhou Island and its bearing on climate

More Information
  • The Weizhou Island, located in the northern border of the tropics, is relatively too high in latitude to coral growth. Low temperature in winter time is the key factor which limits the coral growth and reef development. Reconstructing the development of coral reefs on the Weizhou Island is of great scientific significance for understanding the response of corals to past climate and predicting the development trend of coral reefs in the future. This study is devoted to the drilling cores extracted from the Well GS-3 on the Weizhou Island. The cores were dated with high-precision uranium series dating, upon which the chronological framework of the coral reefs is established. Particle size, biological composition and mineral composition are analyzed for revealing the composition of the coral deposits. The age of the coral reefs at 5.57 m in depth of the core GS-3 is dated 3737 ± 17 aBP. The average vertical accretion rate of the coral reefs is 1.49 m/ ka calculated based on this age. The growth of coral reefs on the Weizhou Island were accelerated during the periods of 3737~2476 aBP, 2288~1191 aBP and 325 years ago to present with vertical accretion rates of 2.21 m/ka, 1.13 m/ka and 1.85 m/ka respectively, and decelerated during the periods of 2476~2288 aBP and 1191~325 aBP and the correspondent vertical accretion rates were 0.64 m/ ka and 0.48 m/ka respectively. The biological components of sediments are mainly composed of corals, coralline algae and mollusks, while the mineral compositions dominated by aragonite and quartz. The correlation between coral reef vertical accretion rate and its climate background suggests that the rapid development stage of coral reefs on the Weizhou Island could roughly correlated to the Late Megathermal Period, Roman Warm Period and Current Warm Period, and the slowing down stages of development of reefs roughly corresponded to the cold periods, namely the Late Dark Ages Cold Period, the Medieval Climate Anomaly and the early Little Ice Age. In general, the development of coral reefs on the Weizhou Island at relatively high latitudes is depending on climate changes. The warm periods are conducive to coral growth and otherwise, coral reefs growth would slow down as cold periods came.

  • 加载中
  • [1] Bruno J F, Selig E R. Regional Decline of Coral Cover in the Indo-Pacific: Timing, Extent, and Subregional Comparisons [J]. PLoS One, 2007, 2(8): e711. doi: 10.1371/journal.pone.0000711

    CrossRef Google Scholar

    [2] Gardner T A, Cote I M, Gill J A, et al. Long-term region-wide declines in Caribbean corals [J]. Science, 2003, 301(5635): 958-960. doi: 10.1126/science.1086050

    CrossRef Google Scholar

    [3] Bellwood D R, Hughes T P, Folke C, et al. Confronting the coral reef crisis [J]. Nature, 2004, 429(6994): 827-833. doi: 10.1038/nature02691

    CrossRef Google Scholar

    [4] Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification [J]. Science, 2007, 318(5857): 1737-1742. doi: 10.1126/science.1152509

    CrossRef Google Scholar

    [5] Hughes T P, Graham N A J, Jackson J B C, et al. Rising to the challenge of sustaining coral reef resilience [J]. Trends in Ecology & Evolution, 2010, 25(11): 633-642.

    Google Scholar

    [6] Pandolfi J M, Connolly S R, Marshall D J, et al. Projecting Coral Reef Futures Under Global Warming and Ocean Acidification [J]. Science, 2011, 333(6041): 418-422. doi: 10.1126/science.1204794

    CrossRef Google Scholar

    [7] Beger M, Sommer B, Harrison P L, et al. Conserving potential coral reef refuges at high latitudes [J]. Diversity and Distributions, 2014, 20(3): 245-257. doi: 10.1111/ddi.12140

    CrossRef Google Scholar

    [8] Yamano H, Sugihara K, Nomura K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures [J]. Geophysical Research Letters, 2011, 38(4): L04601.

    Google Scholar

    [9] Booth D J, Figueira W F, Gregson M A, et al. Occurrence of tropical fishes in temperate southeastern Australia: Role of the East Australian Current [J]. Estuarine, Coastal and Shelf Science, 2007, 72(1-2): 102-114. doi: 10.1016/j.ecss.2006.10.003

    CrossRef Google Scholar

    [10] Baird A H, Sommer B, Madin J S. Pole-ward range expansion of Acropora spp. along the east coast of Australia [J]. Coral Reefs, 2012, 31(4): 1063-1063. doi: 10.1007/s00338-012-0928-6

    CrossRef Google Scholar

    [11] Precht W F, Aronson R B. Climate Flickers and Range Shifts of Reef Corals [J]. Frontiers in Ecology and the Environment, 2004, 2(6): 307-314. doi: 10.1890/1540-9295(2004)002[0307:CFARSO]2.0.CO;2

    CrossRef Google Scholar

    [12] Serrano E, Coma R, Ribes M. A phase shift from macroalgal to coral dominance in the Mediterranean [J]. Coral Reefs, 2012, 31(4): 1199-1199. doi: 10.1007/s00338-012-0939-3

    CrossRef Google Scholar

    [13] Serrano E, Coma R, Ribes M, et al. Rapid Northward Spread of a Zooxanthellate Coral Enhanced by Artificial Structures and Sea Warming in the Western Mediterranean [J]. PLoS One, 2013, 8(1): e52739. doi: 10.1371/journal.pone.0052739

    CrossRef Google Scholar

    [14] Qin Z J, Yu K F, Wang Y H, et al. Spatial and Intergeneric Variation in Physiological Indicators of Corals in the South China Sea: Insights Into Their Current State and Their Adaptability to Environmental Stress [J]. Journal of Geophysical Research:Oceans, 2019, 124(5): 3317-3332. doi: 10.1029/2018JC014648

    CrossRef Google Scholar

    [15] Qin Z J, Yu K F, Liang Y T, et al. Latitudinal variation in reef coral tissue thickness in the South China Sea: Potential linkage with coral tolerance to environmental stress [J]. Science of the Total Environment, 2020, 711: 134610. doi: 10.1016/j.scitotenv.2019.134610

    CrossRef Google Scholar

    [16] Yu W J, Wang W H, Yu K F, et al. Rapid decline of a relatively high latitude coral assemblage at Weizhou Island, northern South China Sea [J]. Biodiversity and Conservation, 2019, 28(14): 3925-3949. doi: 10.1007/s10531-019-01858-w

    CrossRef Google Scholar

    [17] Clark T R, Chen X F, Leonard N D, et al. Episodic coral growth in China's subtropical coral communities linked to broad-scale climatic change [J]. Geology, 2019, 47(1): 79-82. doi: 10.1130/G45278.1

    CrossRef Google Scholar

    [18] Yan S, Zhao J X, Lau A Y A, et al. Episodic Reef Growth in the Northern South China Sea linked to Warm Climate During the Past 7, 000 Years: Potential for Future Coral Refugia [J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(4): 1032-1043. doi: 10.1029/2018JG004939

    CrossRef Google Scholar

    [19] 余克服, 蒋明星, 程志强, 等. 涠洲岛42年来海面温度变化及其对珊瑚礁的影响[J]. 应用生态学报, 2004, 15(3):506-510 doi: 10.3321/j.issn:1001-9332.2004.03.030

    CrossRef Google Scholar

    YU Kefu, JIANG Mingxing, CHENG Zhiqiang, et al. Latest forty two years’ sea surface temperature change of Weizhou Island and its influence on coral reef ecosystem [J]. Chinese Journal of Applied Ecology, 2004, 15(3): 506-510. doi: 10.3321/j.issn:1001-9332.2004.03.030

    CrossRef Google Scholar

    [20] 梁文, 黎广钊. 涠洲岛珊瑚礁分布特征与环境保护的初步研究[J]. 环境科学研究, 2002, 15(6):5-7,16 doi: 10.3321/j.issn:1001-6929.2002.06.002

    CrossRef Google Scholar

    LIANG Wen, LI Guangzhao. Preliminary study on characteristics of coral reef distribution and environmental protection in Weizhou Island [J]. Research of Environmental Sciences, 2002, 15(6): 5-7,16. doi: 10.3321/j.issn:1001-6929.2002.06.002

    CrossRef Google Scholar

    [21] 周雄, 李鸣, 郑兆勇, 等. 近50年涠洲岛5次珊瑚冷白化的海洋站SST指标变化趋势分析[J]. 热带地理, 2010, 30(6):582-586 doi: 10.3969/j.issn.1001-5221.2010.06.002

    CrossRef Google Scholar

    ZHOU Xiong, LI Ming, ZHENG Zhaoyong, et al. An analysis on the trend of sea surface temperature indices for coral cold bleaching in Weizhou Island ocean observation station during 1960-2009 [J]. Tropical Geography, 2010, 30(6): 582-586. doi: 10.3969/j.issn.1001-5221.2010.06.002

    CrossRef Google Scholar

    [22] 刘敬合, 黎广钊, 农华琼. 涠洲岛地貌与第四纪地质特征[J]. 广西科学院学报, 1991, 7(1):27-36

    Google Scholar

    LIU Jinghe, LI Guangzhao, NONG Huaqiong. Features of geomorphy and quaternary geology of the Weizhou Island [J]. Journal of the Guangxi Academy of Sciences, 1991, 7(1): 27-36.

    Google Scholar

    [23] 叶维强, 黎广钊, 庞衍军, 等. 北部湾涠洲岛珊瑚礁海岸及第四纪沉积特征[J]. 海洋科学, 1988, 12(6):13-17

    Google Scholar

    YE Weiqiang, LI Guangzhao, PANG Yanjun, et al. Characteristics of the coastal reef and quaternary sediment from the Weizhou Island, Beibu Gulf [J]. Marine Sciences, 1988, 12(6): 13-17.

    Google Scholar

    [24] 黎广钊, 梁文, 农华琼, 等. 涠洲岛珊瑚礁生态环境条件初步研究[J]. 广西科学, 2004, 11(4):379-384 doi: 10.3969/j.issn.1005-9164.2004.04.027

    CrossRef Google Scholar

    LI Guangzhao, LIANG Wen, NONG Huaqiong, et al. Preliminary study on conditions of coral reef ecological environment along the coast of Weizhou Island [J]. Guangxi Sciences, 2004, 11(4): 379-384. doi: 10.3969/j.issn.1005-9164.2004.04.027

    CrossRef Google Scholar

    [25] 邱绍芳. 涠洲岛附近海域水质和底质环境的分析与评价[J]. 广西科学院学报, 1999, 15(4):170-173

    Google Scholar

    QIU Shaofang. Analysis and evaluation of substrate environment and water quality of the sea area around Weizhou Island [J]. Journal of Guangxi Academy of Sciences, 1999, 15(4): 170-173.

    Google Scholar

    [26] 韦蔓新, 赖廷和, 何本茂. 涠洲岛水域生物理化环境特征及其相互关系[J]. 海洋科学, 2003, 27(2):67-71 doi: 10.3969/j.issn.1000-3096.2003.02.020

    CrossRef Google Scholar

    WEI Manxin, LAI Tinghe, HE Benmao. The biological and physical and chemical characteristics of environment and their matual relationships in the waters of Weizhou Island [J]. Marine Sciences, 2003, 27(2): 67-71. doi: 10.3969/j.issn.1000-3096.2003.02.020

    CrossRef Google Scholar

    [27] Chen T R, Li S, Yu K F, et al. Increasing temperature anomalies reduce coral growth in the Weizhou Island, northern South China Sea [J]. Estuarine, Coastal and Shelf Science, 2013, 130: 121-126. doi: 10.1016/j.ecss.2013.05.009

    CrossRef Google Scholar

    [28] 黄晖, 马斌儒, 练健生, 等. 广西涠洲岛海域珊瑚礁现状及其保护策略研究[J]. 热带地理, 2009, 29(4):307-312,318 doi: 10.3969/j.issn.1001-5221.2009.04.001

    CrossRef Google Scholar

    HUANG Hui, MA Binru, LIAN Jiansheng, et al. Status and conservation strategies of the coral reef in Weizhou Island, Guangxi [J]. Tropical Geography, 2009, 29(4): 307-312,318. doi: 10.3969/j.issn.1001-5221.2009.04.001

    CrossRef Google Scholar

    [29] 王文欢, 余克服, 王英辉. 北部湾涠洲岛珊瑚礁的研究历史、现状与特色[J]. 热带地理, 2016, 36(1):72-79

    Google Scholar

    WANG Wenhuan, YU Kefu, WANG Yinghui. A Review on the research of coral reefs in the Weizhou Island, Beibu Gulf [J]. Tropical Geography, 2016, 36(1): 72-79.

    Google Scholar

    [30] Yu K F, Zhao J X, Wang P X, et al. High-precision TIMS U-series and AMS 14C dating of a coral reef lagoon sediment core from southern South China Sea [J]. Quaternary Science Reviews, 2006, 25(17-18): 2420-2430. doi: 10.1016/j.quascirev.2006.01.027

    CrossRef Google Scholar

    [31] Clark T R, Roff G, Zhao J X, et al. Testing the precision and accuracy of the U-Th chronometer for dating coral mortality events in the last 100 years [J]. Quaternary Geochronology, 2014, 23: 35-45. doi: 10.1016/j.quageo.2014.05.002

    CrossRef Google Scholar

    [32] McManus J F, Anderson R F, Broecker W S, et al. Radiometrically determined sedimentary fluxes in the sub-polarNorth Atlantic during the last 140, 000 years [J]. Earth and Planetary Science Letters, 1998, 155(1-2): 29-43. doi: 10.1016/S0012-821X(97)00201-X

    CrossRef Google Scholar

    [33] Chen T R, Roff G, Feng Y X, et al. Tropical Sand Cays as Natural Paleocyclone Archives [J]. Geophysical Research Letters, 2019, 46(16): 9796-9803. doi: 10.1029/2019GL084274

    CrossRef Google Scholar

    [34] Toth L T, Aronson R B, Vollmer S V, et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs [J]. Science, 2012, 337(6090): 81-84.

    Google Scholar

    [35] 曲高生. 西沙群岛琛航岛碳酸盐沉积物X射线定量分析方法研究[J]. 矿物学报, 1990, 10(4):360-369 doi: 10.3321/j.issn:1000-4734.1990.04.010

    CrossRef Google Scholar

    QU Gaosheng. Quantitative X-ray diffraction analysis of carbonate sediments from Chenhang Island, Xisha Island, China: a methodological study [J]. Acta Mineralogica Sinica, 1990, 10(4): 360-369. doi: 10.3321/j.issn:1000-4734.1990.04.010

    CrossRef Google Scholar

    [36] Shen C C, Li K S, Sieh K, et al. Variation of initial 230Th/ 232Th and limits of high precision U–Th dating of shallow-water corals [J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4201-4223.

    Google Scholar

    [37] Cheng H, Edwards R L, Hoff J, et al. The half-lives of uranium-234 and thorium-230 [J]. Chemical Geology, 2000, 169(1-2): 17-33. doi: 10.1016/S0009-2541(99)00157-6

    CrossRef Google Scholar

    [38] 樊祺诚, 孙谦, 隋建立, 等. 北部湾涠洲岛及斜阳岛火山岩微量元素和同位素地球化学及其构造意义[J]. 岩石学报, 2008, 24(6):1323-1332

    Google Scholar

    FAN Qicheng, SUN Qian, SUI Jianli, et al. Trace-element and isotopic geochemistry of volcanic rocks and it’s techtonic implications in Weizhou Island and Xieyang Island, Northern Bay [J]. Acta Petrologica Sinica, 2008, 24(6): 1323-1332.

    Google Scholar

    [39] 王国忠, 全松青, 吕炳全. 南海涠洲岛区现代沉积环境和沉积作用演化[J]. 海洋地质与第四纪地质, 1991, 11(1):69-82

    Google Scholar

    WANG Guozhong, QUAN Songqing, LV Bingquan. Evolution of modern sedimentary environments and sedimentations in the Weizhou Island area, south China sea [J]. Marine Geology & Quaternary Geology, 1991, 11(1): 69-82.

    Google Scholar

    [40] 余克服, 钟晋梁, 赵建新, 等. 雷州半岛珊瑚礁生物地貌带与全新世多期相对高海平面[J]. 海洋地质与第四纪地质, 2002, 22(2):27-33

    Google Scholar

    YU Kefu, ZHONG Jinliang, ZHAO Jianxin, et al. Biological-geomorphological zones in a coral reef area at southwest Leizhou Peninsula unveil multiple sea level high-stands in the Holocene [J]. Marine Geology & Quaternary Geology, 2002, 22(2): 27-33.

    Google Scholar

    [41] 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学 (B辑), 1994, 37(3):353-365

    Google Scholar

    SHI Yafeng, KONG Zhaochen, WANG Sumin, et al. The climate fluctuation and important events of Holocene Megathermal in China [J]. Science in China. Series B, Chemistry, Life Science & Earth Sciences, 1994, 37(3): 353-365.

    Google Scholar

    [42] Lam H H. Climate: present, past and future[M]. London: Methuen, 1977.

    Google Scholar

    [43] 黄博津, 余克服, 陈特固. 过去2000年的特征气候时段及其影响因素[J]. 海洋地质与第四纪地质, 2013, 33(1):97-108

    Google Scholar

    HUANG Bojin, YU Kefu, CHEN Tegu. Recent progress on specific climatic stages and driving forces over last 2000 years [J]. Marine Geology & Quaternary Geology, 2013, 33(1): 97-108.

    Google Scholar

    [44] Mann M E, Zhang Z H, Rutherford S, et al. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly [J]. Science, 2009, 326(5957): 1256-1260.

    Google Scholar

    [45] 黎广钊, 梁文, 廖思明, 等. 广西沿海全新世以来气候变化[J]. 海洋地质与第四纪地质, 1996, 16(3):49-60

    Google Scholar

    LI Guangzhao, LIANG Wen, LIAO Siming, et al. Climatic changes since Holocene along Guangxi coast [J]. Marine Geology & Quaternary Geology, 1996, 16(3): 49-60.

    Google Scholar

    [46] 李平日, 方国祥, 黄光庆. 珠江三角洲全新世环境演变[J]. 第四纪研究, 1991, 11(2):130-139 doi: 10.3321/j.issn:1001-7410.1991.02.005

    CrossRef Google Scholar

    LI Pingri, FANG Guoxiang, HUANG Guangqing. Holocene environmental changes in Zhujiang delta [J]. Quaternary Sciences, 1991, 11(2): 130-139. doi: 10.3321/j.issn:1001-7410.1991.02.005

    CrossRef Google Scholar

    [47] Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record [J]. Quaternary Science Reviews, 2008, 27(11-12): 1166-1180. doi: 10.1016/j.quascirev.2008.02.015

    CrossRef Google Scholar

    [48] Yu K F, Zhao J X, Wei G J, et al. Mid-late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea [J]. Global and Planetary Change, 2005, 47(2-4): 301-316. doi: 10.1016/j.gloplacha.2004.10.018

    CrossRef Google Scholar

    [49] Wei G J, Yu K F, Zhao J X. Sea surface temperature variations recorded on coralline Sr/Ca ratios during Mid-Late Holocene in Leizhou Peninsula [J]. Chinese Science Bulletin, 2004, 49(17): 1876-1881.

    Google Scholar

    [50] 张婷, 胡敏航, 张文静, 等. 涠洲岛珊瑚礁近千年的发育过程及其对气候变化的响应[J]. 热带海洋学报, 2020, 39(4):70-79

    Google Scholar

    ZHANG Ting, HU Minhang, ZHANG Wenjing, et al. Coral reef growth of Weizhou Island and its response to climate change in the past millennium [J]. Journal of Tropical Oceanography, 2020, 39(4): 70-79.

    Google Scholar

    [51] Davies P J, Montaggioni L. Reef growth and sea-level change: the environmental signature[C]//Proceedings of the Fifth International Coral Reef Symposium. Tahiti: Martin, 1985: 477-515.

    Google Scholar

    [52] Sarg J F. Carbonate Sequence Stratigraphy[M]//Wilgus C K, Hastings B S, Kendall C G S C, et al. SEPM Special Publication: Sea-Level Changes-An Integrated Approach. Society of Economic Paleontologists and Mineralogists, 1988: 155-181.

    Google Scholar

    [53] Vecsei A. A new estimate of global reefal carbonate production including the fore-reefs [J]. Global and Planetary Change, 2004, 43(1-2): 1-18. doi: 10.1016/j.gloplacha.2003.12.002

    CrossRef Google Scholar

    [54] Hongo C, Kayanne H. Holocene coral reef development under windward and leeward locations at Ishigaki Island, Ryukyu Islands, Japan [J]. Sedimentary Geology, 2009, 214(1-4): 62-73. doi: 10.1016/j.sedgeo.2008.01.011

    CrossRef Google Scholar

    [55] Hamanaka N, Kan H, Yokoyama Y, et al. Disturbances with hiatuses in high-latitude coral reef growth during the Holocene: Correlation with millennial-scale global climate change [J]. Global and Planetary Change, 2012, 80-81: 21-35. doi: 10.1016/j.gloplacha.2011.10.004

    CrossRef Google Scholar

    [56] 余克服, 陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘, 2009, 16(6):138-145 doi: 10.3321/j.issn:1005-2321.2009.06.015

    CrossRef Google Scholar

    YU Kefu, CHEN Tegu. Beach sediments from northern South China Sea suggest high and oscillating sea level during the lat Holocene [J]. Earth Science Frontiers, 2009, 16(6): 138-145. doi: 10.3321/j.issn:1005-2321.2009.06.015

    CrossRef Google Scholar

    [57] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学, 2012, 55(8):1217-1229 doi: 10.1007/s11430-012-4449-5

    CrossRef Google Scholar

    YU Kefu. Coral reefs in the South China Sea: Their response to and records on past environmental changes [J]. Science China Earth Science, 2012, 55(8): 1217-1229. doi: 10.1007/s11430-012-4449-5

    CrossRef Google Scholar

    [58] Hoegh-Guldberg O, Fine M, Skirving W, et al. Coral bleaching following wintry weather [J]. Limnology and Oceanography, 2005, 50(1): 265-271. doi: 10.4319/lo.2005.50.1.0265

    CrossRef Google Scholar

    [59] Yu K F, Zhao J X, Liu T S, et al. High-frequency winter cooling and reef coral mortality during the Holocene climatic optimum [J]. Earth and Planetary Science Letters, 2004, 224(1-2): 143-155. doi: 10.1016/j.jpgl.2004.04.036

    CrossRef Google Scholar

    [60] Moy C M, Seltzer G O, Rodbell DT, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(5323) PDF downloads(147) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint