2022 Vol. 42, No. 3
Article Contents

LI Qiuhang, XIE Yuanyun, KANG Chunguo, CHI Yunping, WU Peng, SUN Lei, LI Siqi. Heavy mineral composition of the Songhua River system identified by manual and TIMA automatic methods and implications for provenance tracing[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 170-183. doi: 10.16562/j.cnki.0256-1492.2021093001
Citation: LI Qiuhang, XIE Yuanyun, KANG Chunguo, CHI Yunping, WU Peng, SUN Lei, LI Siqi. Heavy mineral composition of the Songhua River system identified by manual and TIMA automatic methods and implications for provenance tracing[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 170-183. doi: 10.16562/j.cnki.0256-1492.2021093001

Heavy mineral composition of the Songhua River system identified by manual and TIMA automatic methods and implications for provenance tracing

More Information
  • The Songhua River is the most important fluvial system in northeast China and its heavy mineral composition is of great significance to the revealing of depositional environment, source-sink relationship and drainage evolution. However, the current study concerning the heavy mineral composition of the Songhua River system is very limited, and the factors affecting the composition of heavy minerals are not clear up to date. In order to solve the problem, sand samples are collected along the banks of the main stream and 10 major tributaries of the river system, in addition to the two from the T3 terraces of the Tonghe River. Using the new automated mineral identification technology TESCAN Integrated Mineral Analyzer (TIMA) and the manual method respectively, heavy mineral analysis of the sample components in depth of 63~250 m is carried out for the samples. The influences of sediment sources, fluvial processes and chemical weathering on the heavy mineral composition of the Songhua River system are discussed. The results show that the tributaries sediments are sourced from different mountains, such as the Great Hinggan Mountains, the Lesser Hinggan Mountains and the Changbai Mountains. These mountains are significantly different in heavy mineral composition, and the heavy minerals of hornblende, titanite, epidote, leucoxene, augite, ilmenite and hematite+limonite are effective indicators to distinguish the water systems of different sources. The Nenjiang tributaries are originated from the Great Hinggan Mountains, of which sediments are rich in augite (the Nuomin River), ilmenite (the Ganhe River, Duobukuer River and Alun River) and hematite+limonite (the Ganhe River, Duobukuer River and Yalu River), showing the control of the basal source over heavy mineral composition, which can be observed in the modern riverbed gravels. However, in the main stream of the Songhua River, those heavy minerals are significantly reduced, suggesting that the influence of the Great Hinggan Mountains, as a source area, is extremely weak and the source control of heavy mineral composition is heavily influenced by river process. It is worth to point out that the heavy mineral composition of the Songhua River main stream is the mixture of the Lalin River and the Second Songhua River, indicating that the main stream of the Songhua River has inherited more heavy mineral information from the southeastern mountains of the Songnen Plain (the remnants of Changbai Mountain). The composition of heavy minerals in T3 terrace samples of Tonghe, which was severely affected by chemical weathering, is extremely simple, the unstable heavy minerals such as augite and hornblende have completely disappeared, and stable minerals are highly enriched, reflecting the control of chemical weathering over heavy mineral composition. Compared with the traditional manual identification of monotonous heavy mineral composition (usually only more than 20 mineral species can be identified), the TIMA method can reveal more mineral information (usually more than 40 mineral species can be identified), but there are shortcomings in identifying homogenous and polymorphic minerals.

  • 加载中
  • [1] 曾方侣, 姜楷, 黄超, 等. 砂岩中重矿物的成因意义[J]. 四川地质学报, 2020, 40(1):26-29,50 doi: 10.3969/j.issn.1006-0995.2020.01.006

    CrossRef Google Scholar

    ZENG Fanglü, JIANG Kai, HUANG Chao, et al. Genetic significance of heavy minerals in sandstone [J]. Acta Geologica Sichuan, 2020, 40(1): 26-29,50. doi: 10.3969/j.issn.1006-0995.2020.01.006

    CrossRef Google Scholar

    [2] 许苗苗, 魏晓椿, 杨蓉, 等. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2):154-171

    Google Scholar

    XU Miaomiao, WEI Xiaochun, YANG Rong, et al. Research progress of provenance tracing method for heavy mineral analysis [J]. Advances in Earth Science, 2021, 36(2): 154-171.

    Google Scholar

    [3] 王国茹, 陈洪德, 朱志军, 等. 川东南-湘西地区志留系小河坝组砂岩中重矿物特征及地质意义[J]. 成都理工大学学报:自然科学版, 2011, 38(1):7-14

    Google Scholar

    WANG Guoru, CHEN Hongde, ZHU Zhijun, et al. Characteristics and geological implications of heavy minerals in Lower Silurian Xiaoheba Formation sandstones in Southeast Sichuan-West Hunan [J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2011, 38(1): 7-14.

    Google Scholar

    [4] 李明月, 孙学军, Karki K, 等. 喜马拉雅山中段柯西河跨境流域河流沉积物的矿物和元素特征[J]. 矿物岩石地球化学通报, 2019, 38(5):989-997

    Google Scholar

    LI Mingyue, SUN Xuejun, Karki K, et al. Mineral and elemental characteristics of bed sediments in the Trans-boundary Koshi River Basin in the central Himalayas [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(5): 989-997.

    Google Scholar

    [5] 周国华, 孙彬彬, 刘占元, 等. 中国东部主要河流稀土元素地球化学特征[J]. 现代地质, 2012, 26(5):1028-1042 doi: 10.3969/j.issn.1000-8527.2012.05.024

    CrossRef Google Scholar

    ZHOU Guohua, SUN Binbin, LIU Zhanyuan, et al. Geochemical feature of rare earth elements in major rivers of eastern China [J]. Geoscience, 2012, 26(5): 1028-1042. doi: 10.3969/j.issn.1000-8527.2012.05.024

    CrossRef Google Scholar

    [6] Singh P, Rajamani V. REE geochemistry of recent clastic sediments from the Kaveri floodplains, southern India: Implication to source area weathering and sedimentary processes [J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3093-3108. doi: 10.1016/S0016-7037(01)00636-6

    CrossRef Google Scholar

    [7] Tripathi J K, Ghazanfari P, Rajamani V, et al. Geochemistry of sediments of the Ganges alluvial plains: evidence of large-scale sediment recycling [J]. Quaternary International, 2007, 159(1): 119-130. doi: 10.1016/j.quaint.2006.08.016

    CrossRef Google Scholar

    [8] 童胜琪, 刘志飞, Le K P, 等. 红河盆地的化学风化作用: 主要和微量元素地球化学记录[J]. 矿物岩石地球化学通报, 2006, 25(3):218-225 doi: 10.3969/j.issn.1007-2802.2006.03.002

    CrossRef Google Scholar

    TONG Shengqi, LIU Zhifei, Le K P, et al. Chemical weathering in the Red River Basin: records of major and trace elemental geochemistry [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(3): 218-225. doi: 10.3969/j.issn.1007-2802.2006.03.002

    CrossRef Google Scholar

    [9] 刘文, 徐士进, 杨杰东, 等. 金沙江河流悬浮物与沉积物的矿物学特征及其表生地球化学意义[J]. 矿物岩石地球化学通报, 2007, 26(2):164-169 doi: 10.3969/j.issn.1007-2802.2007.02.012

    CrossRef Google Scholar

    LIU Wen, XU Shijin, YANG Jiedong, et al. Mineralogical characteristics of suspended matters and sediments in the Jinshajiang River and their superficial geochemical significance [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(2): 164-169. doi: 10.3969/j.issn.1007-2802.2007.02.012

    CrossRef Google Scholar

    [10] 周天琪, 吴朝东, 袁波, 等. 准噶尔盆地南缘侏罗系重矿物特征及其物源指示意义[J]. 石油勘探与开发, 2019, 46(1):65-78

    Google Scholar

    ZHOU Tianqi, WU Chaodong, YUAN Bo, et al. New insights into multiple provenances evolution of the Jurassic from heavy minerals characteristics in southern Junggar Basin, NW China [J]. Petroleum Exploration and Development, 2019, 46(1): 65-78.

    Google Scholar

    [11] Song H Y, Liu J Q, Yin P, et al. Characteristics of heavy minerals and quantitative provenance identification of sediments from the muddy area outside the Oujiang estuary since 5.8 kyr [J]. Journal of Ocean University of China, 2018, 17(6): 1325-1335. doi: 10.1007/s11802-018-3684-6

    CrossRef Google Scholar

    [12] 武法东, 陆永潮, 阮小燕, 等. 重矿物聚类分析在物源分析及地层对比中的应用: 以东海陆架盆地西湖凹陷平湖地区为例[J]. 现代地质, 1996, 10(3):106-112

    Google Scholar

    WU Fadong, LU Yongchao, RUAN Xiaoyan, et al. Application of heavy minerals cluster analysis to study of clastic sources and stratigraphic correlation [J]. Geoscience, 1996, 10(3): 106-112.

    Google Scholar

    [13] Herbig H G, Stattegger K. Late Palaeozoic heavy mineral and clast modes from the Betic Cordillera (southern Spain): transition from a passive to an active continental margin [J]. Sedimentary Geology, 1989, 63(1-2): 93-108. doi: 10.1016/0037-0738(89)90073-0

    CrossRef Google Scholar

    [14] 冉波, 王成善, 朱利东, 等. 距今40~30Ma时期青藏高原北缘酒西盆地沉积物重矿物分析和构造意义[J]. 地学前缘, 2008, 15(5):388-397 doi: 10.3321/j.issn:1005-2321.2008.05.040

    CrossRef Google Scholar

    RAN Bo, WANG Chengshan, ZHU Lidong, et al. Analysis of heavy minerals in sediments of Jiuxi Basin in north margin of the Tibet plateau in 40-30 Ma and its tectonic implication [J]. Earth Science Frontiers, 2008, 15(5): 388-397. doi: 10.3321/j.issn:1005-2321.2008.05.040

    CrossRef Google Scholar

    [15] 宋春晖, 孙淑荣, 方小敏, 等. 酒西盆地晚新生代沉积物重矿物分析与高原北部隆升[J]. 沉积学报, 2002, 20(4):552-559 doi: 10.3969/j.issn.1000-0550.2002.04.004

    CrossRef Google Scholar

    SONG Chunhui, SUN Shurong, FANG Xiaomin, et al. Analysis of tectonic uplift and heavy minerals of sediments on Jiuxi Basin in the northern margin of Tibetan Plateau since the late Cenozoic [J]. Acta Sedimentologica Sinica, 2002, 20(4): 552-559. doi: 10.3969/j.issn.1000-0550.2002.04.004

    CrossRef Google Scholar

    [16] 方世虎, 郭召杰, 贾承造, 等. 准噶尔盆地南缘中-新生界沉积物重矿物分析与盆山格局演化[J]. 地质科学, 2006, 41(4):648-662 doi: 10.3321/j.issn:0563-5020.2006.04.008

    CrossRef Google Scholar

    FANG Shihu, GUO Zhaojie, JIA Chengzao, et al. Meso-cenozoic heavy minerals' assemblages in the southern Junggar Basin and its implications for basin-orogen pattern [J]. Chinese Journal of Geology, 2006, 41(4): 648-662. doi: 10.3321/j.issn:0563-5020.2006.04.008

    CrossRef Google Scholar

    [17] 赵雪松, 高志勇, 冯佳睿, 等. 库车前陆盆地三叠系: 新近系重矿物组合特征与盆山构造演化关系[J]. 沉积学报, 2014, 32(1):68-77

    Google Scholar

    ZHAO Xuesong, GAO Zhiyong, FENG Jiarui, et al. Triassic-neogene heavy minerals' assemblages characteristics and Basin-Orogen tectonic evolution relationship in the Kuqa Foreland Basin [J]. Acta Sedimentologica Sinica, 2014, 32(1): 68-77.

    Google Scholar

    [18] Cheng L Q, Song Y G, Chang H, et al. Heavy mineral assemblages and sedimentation rates of eastern Central Asian loess: paleoenvironmental implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551: 109747. doi: 10.1016/j.palaeo.2020.109747

    CrossRef Google Scholar

    [19] 中国地质科学院地矿所. 砂矿物鉴定手册[M]. 北京: 地质出版社, 1977

    Google Scholar

    Chinese Academy of Geological Sciences. Handbook of Sand Mineral Identification[M]. Beijing: Geological Publishing House, 1977.

    Google Scholar

    [20] 谢小敏, 李利, 袁秋云, 等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1):50-60

    Google Scholar

    XIE Xiaomin, LI Li, YUAN Qiuyun, et al. Grain size distribution of organic matter and pyrite in Alum shales characterized by TIMA and its paleo-environmental significance [J]. Rock and Mineral Analysis, 2021, 40(1): 50-60.

    Google Scholar

    [21] 陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用: 以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2):345-368

    Google Scholar

    CHEN Qian, SONG Wenlei, YANG Jinkun, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: an example from TESCAN TIMA [J]. Mineral Deposits, 2021, 40(2): 345-368.

    Google Scholar

    [22] Sutherland D N, Gottlieb P. Application of automated quantitative mineralogy in mineral processing [J]. Minerals Engineering, 1991, 4(7-11): 753-762. doi: 10.1016/0892-6875(91)90063-2

    CrossRef Google Scholar

    [23] Haberlah D, Williams M A J, Halverson G, et al. Loess and floods: high-resolution multi-proxy data of Last Glacial Maximum (LGM) slackwater deposition in the Flinders Ranges, semi-arid South Australia [J]. Quaternary Science Reviews, 2010, 29(19-20): 2673-2693. doi: 10.1016/j.quascirev.2010.04.014

    CrossRef Google Scholar

    [24] Martin R S, Mather T A, Pyle D M, et al. Composition‐resolved size distributions of volcanic aerosols in the Mt. Etna plumes [J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D17): D17211. doi: 10.1029/2007JD009648

    CrossRef Google Scholar

    [25] Speirs J C, McGowan H A, Neil D T. Polar eolian sand transport: grain characteristics determined by an automated scanning electron microscope (QEMSCAN®) [J]. Arctic, Antarctic, and Alpine Research, 2008, 40(4): 731-743. doi: 10.1657/1523-0430(07-029)[SPEIRS]2.0.CO;2

    CrossRef Google Scholar

    [26] Meyer M C, Austin P, Tropper P. Quantitative evaluation of mineral grains using automated SEM–EDS analysis and its application potential in optically stimulated luminescence dating [J]. Radiation Measurements, 2013, 58: 1-11. doi: 10.1016/j.radmeas.2013.07.004

    CrossRef Google Scholar

    [27] 孙白云. 黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J]. 海洋地质与第四纪地质, 1990, 10(3):23-34

    Google Scholar

    SUN Baiyun. Detrital mineral assemblages in the Huanghe, Changjiang and Zhujiang River delta sediments [J]. Marine Geology & Quaternary Geology, 1990, 10(3): 23-34.

    Google Scholar

    [28] 邵磊, 李长安, 张玉芬, 等. 长江川江段现代沉积物的重矿物组合特征[J]. 地质科技情报, 2010, 29(3):49-54 doi: 10.3969/j.issn.1000-7849.2010.03.007

    CrossRef Google Scholar

    SHAO Lei, LI Chang’an, ZHANG Yufen, et al. Heavy mineral assemblages in modern sediments of the Chuanjiang River [J]. Geological Science and Technology Information, 2010, 29(3): 49-54. doi: 10.3969/j.issn.1000-7849.2010.03.007

    CrossRef Google Scholar

    [29] 李维东. 黄河上游晚新生代沉积物的物源分析与河流演化[D]. 中国地质科学院博士学位论文, 2020

    Google Scholar

    LI Weidong. Provenance analysis of the Late Cenozoic sediment of the Upper Yellow River and its evolution[D]. Doctor Dissertation of Chinese Academy of Geological Sciences, 2020.

    Google Scholar

    [30] 王嘉新, 谢远云, 康春国, 等. 哈尔滨荒山岩芯重矿物特征对松花江第四纪水系演化的指示[J]. 第四纪研究, 2020, 40(1):79-94 doi: 10.11928/j.issn.1001-7410.2020.01.08

    CrossRef Google Scholar

    WANG Jiaxin, XIE Yuanyun, KANG Chunguo, et al. The indication of the heavy mineral characteristics of the core in Harbin Huangshan to the Quaternary drainage evolution of Songhua River [J]. Quaternary Sciences, 2020, 40(1): 79-94. doi: 10.11928/j.issn.1001-7410.2020.01.08

    CrossRef Google Scholar

    [31] 魏振宇, 谢远云, 康春国, 等. 早更新世松花江水系反转: 来自荒山岩芯Sr-Nd同位素特征指示[J]. 沉积学报, 2020, 38(6):1192-1203

    Google Scholar

    WEI Zhenyu, XIE Yuanyun, KANG Chunguo, et al. The inversion of the Songhua River system in the early pleistocene: implications from Sr-Nd isotopic composition in the Harbin Huangshan cores [J]. Acta Sedimentologica Sinica, 2020, 38(6): 1192-1203.

    Google Scholar

    [32] Xie Y Y, Kang C G, Chi Y P, et al. Reversal of the middle-upper Songhua River in the late Early Pleistocene, Northeast China [J]. Geomorphology, 2020, 369: 107373. doi: 10.1016/j.geomorph.2020.107373

    CrossRef Google Scholar

    [33] 宋国利, 刘钊, 于桂云. 黑龙江省松花江流域主要岩石类型中若干元素的背景含量及其环境意义[J]. 哈尔滨师范大学自然科学学报, 1986(4):113-121

    Google Scholar

    SONG Guoli, LIU Zhao, YU Guiyun. Background contents of some elements in the main rock types of the Songhua River basin in Heilongjiang Province and their environmental significance [J]. Natural Science Journal of Harbin Normal University, 1986(4): 113-121.

    Google Scholar

    [34] 张玉娟, 赵鹤, 钟浩. 松花江流域(哈尔滨段)景观格局脆弱性高程分异[J]. 测绘与空间地理信息, 2020, 43(5):11-15,18 doi: 10.3969/j.issn.1672-5867.2020.05.004

    CrossRef Google Scholar

    ZHANG Yujuan, ZHAO He, ZHONG Hao. Elevation differentiation of landscape pattern vulnerability in Songhua River Basin (Harbin Section) [J]. Geomatics & Spatial Information Technology, 2020, 43(5): 11-15,18. doi: 10.3969/j.issn.1672-5867.2020.05.004

    CrossRef Google Scholar

    [35] 董爱民. 松花江流域地势图晕渲配色方案及优化[J]. 北京测绘, 2021, 35(7):981-985

    Google Scholar

    DONG Aimin. Color scheme and optimization of shading in relief map of Songhua River Basin [J]. Beijing Surveying and Mapping, 2021, 35(7): 981-985.

    Google Scholar

    [36] 孙忠, 贾长青. 松花江流域蓄滞洪区建设有关问题探讨[J]. 东北水利水电, 2007, 25(10):31-33 doi: 10.3969/j.issn.1002-0624.2007.10.012

    CrossRef Google Scholar

    SUN Zhong, JIA Changqing. Discussion on detention basin construction in Songhuajiang river basin [J]. Water Resources & Hydropower of Northeast China, 2007, 25(10): 31-33. doi: 10.3969/j.issn.1002-0624.2007.10.012

    CrossRef Google Scholar

    [37] Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China [J]. Island Arc, 2007, 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x

    CrossRef Google Scholar

    [38] 付俊彧, 朱群, 杨雅军, 等. 中华人民共和国(东北)地质图(1∶1500000)[M]. 北京: 地质出版社, 2019: 1-147.

    Google Scholar

    FU Junyu, ZHU Qun, YANG Yajun, et al. Geological map of the People’s Republic of China (Northeast) (1: 1500000)[M]. Beijing: Geological Publishing House, 2009: 1-147.

    Google Scholar

    [39] 韩梅, 梁贞堂. 关于松花江河源的再研究[J]. 水利水电技术, 2004, 35(12):10-14,27 doi: 10.3969/j.issn.1000-0860.2004.12.003

    CrossRef Google Scholar

    HAN Mei, LIANG Zhentang. Another investigation for the source of Songhua River [J]. Water Resources and Hydropower Engineering, 2004, 35(12): 10-14,27. doi: 10.3969/j.issn.1000-0860.2004.12.003

    CrossRef Google Scholar

    [40] 吴鹏, 谢远云, 康春国, 等. 早更新世晚期松花江水系袭夺: 地球化学和沉积学记录[J]. 地质学报, 2020, 94(10):3144-3160 doi: 10.3969/j.issn.0001-5717.2020.10.024

    CrossRef Google Scholar

    WU Peng, XIE Yuanyun, KANG Chunguo, et al. The capture of the Songhua River system in the late Early Pleistocene: geochemical and sedimentological records [J]. Acta Geologica Sinica, 2020, 94(10): 3144-3160. doi: 10.3969/j.issn.0001-5717.2020.10.024

    CrossRef Google Scholar

    [41] 康春国, 李长安, 王节涛, 等. 江汉平原沉积物重矿物特征及其对三峡贯通的指示[J]. 地球科学-中国地质大学学报, 2009, 34(3):419-427 doi: 10.3321/j.issn:1000-2383.2009.03.006

    CrossRef Google Scholar

    KANG Chunguo, LI Chang’an, WANG Jietao, et al. Heavy minerals characteristics of sediments in Jianghan Plain and its indication to the forming of the Three Gorges [J]. Earth Science-Journal of China University of Geosciences, 2009, 34(3): 419-427. doi: 10.3321/j.issn:1000-2383.2009.03.006

    CrossRef Google Scholar

    [42] 康春国, 李长安, 谢远云, 等. 哈尔滨地区风尘黄土重矿物特征及物源分析[J]. 自然灾害学报, 2011, 20(4):43-51

    Google Scholar

    KANG Chunguo, LI Chang’an, XIE Yuanyun, et al. Heavy mineral characteristics of eolian loess deposits in Harbin area and its provenance implications [J]. Journal of Natural Disasters, 2011, 20(4): 43-51.

    Google Scholar

    [43] Ward I, Merigot K, McInnes B I A. Application of quantitative mineralogical analysis in archaeological micromorphology: a case study from barrow is., western Australia [J]. Journal of Archaeological Method and Theory, 2018, 25(1): 45-68. doi: 10.1007/s10816-017-9330-6

    CrossRef Google Scholar

    [44] Yue W, Yue X Y, Zhang L M, et al. Morphology of detrital zircon as a fingerprint to trace sediment provenance: case study of the Yangtze delta [J]. Minerals, 2019, 9(7): 438. doi: 10.3390/min9070438

    CrossRef Google Scholar

    [45] Dunkl I, von Eynatten H, Andò S, et al. Comparability of heavy mineral data: the first interlaboratory round robin test [J]. Earth-Science Reviews, 2020, 211: 103210. doi: 10.1016/j.earscirev.2020.103210

    CrossRef Google Scholar

    [46] Ishikawa S T, Gulick V C. An automated mineral classifier using Raman spectra [J]. Computers & Geosciences, 2013, 54: 259-268.

    Google Scholar

    [47] Haddad J E, de Lima Filho E S, Vanier F, et al. Multiphase mineral identification and quantification by laser-induced breakdown spectroscopy [J]. Minerals Engineering, 2019, 134: 281-290. doi: 10.1016/j.mineng.2019.02.025

    CrossRef Google Scholar

    [48] Rifai K, Paradis M M, Swierczek Z, et al. Emergences of new technology for ultrafast automated mineral phase identification and quantitative analysis using the CORIOSITY laser-induced breakdown spectroscopy (LIBS) system [J]. Minerals, 2020, 10(10): 918. doi: 10.3390/min10100918

    CrossRef Google Scholar

    [49] Gu Y. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser [J]. Journal of Minerals & Materials Characterization & Engineering, 2003, 2(1): 33-41.

    Google Scholar

    [50] Hrstka T, Gottlieb P, Skála R, et al. Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA) [J]. Journal of Geosciences, 2018, 63(1): 47-63.

    Google Scholar

    [51] Zhang X J, Pease V, Omma J, et al. Provenance of Late Carboniferous to Jurassic sandstones for southern Taimyr, Arctic Russia: a comparison of heavy mineral analysis by optical and QEMSCAN methods [J]. Sedimentary Geology, 2015, 329: 166-176. doi: 10.1016/j.sedgeo.2015.09.008

    CrossRef Google Scholar

    [52] Schulz B, Sandmann D, Gilbricht S. SEM-based automated mineralogy and its application in geo- and material sciences [J]. Minerals, 2020, 10(11): 1004. doi: 10.3390/min10111004

    CrossRef Google Scholar

    [53] 狄会哲, 邓宾, 赵高平, 等. 云贵高原河流水系演化与高原形成过程: 基于现代河流沉积物示踪[J]. 四川地质学报, 2018, 38(4):536-541 doi: 10.3969/j.issn.1006-0995.2018.04.002

    CrossRef Google Scholar

    DI Huizhe, DENG Bin, ZHAO Gaoping, et al. The evolution of the river system on the Yunnan-Guizhou Plateau and formation process of the plateau based on modern river sediment [J]. Acta Geologica Sichuan, 2018, 38(4): 536-541. doi: 10.3969/j.issn.1006-0995.2018.04.002

    CrossRef Google Scholar

    [54] Nie J S, Peng W B, Pfaff K, et al. Controlling factors on heavy mineral assemblages in Chinese loess and Red Clay [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 381-382: 110-118. doi: 10.1016/j.palaeo.2013.04.020

    CrossRef Google Scholar

    [55] 和钟铧, 刘招君, 张峰. 重矿物在盆地分析中的应用研究进展[J]. 地质科技情报, 2001, 20(4):29-32 doi: 10.3969/j.issn.1000-7849.2001.04.006

    CrossRef Google Scholar

    HE Zhonghua, LIU Zhaojun, ZHANG Feng. Latest progress of heavy mineral research in the basin analysis [J]. Geological Science and Technology Information, 2001, 20(4): 29-32. doi: 10.3969/j.issn.1000-7849.2001.04.006

    CrossRef Google Scholar

    [56] 赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21(3):409-415 doi: 10.3969/j.issn.1000-0550.2003.03.007

    CrossRef Google Scholar

    ZHAO Hongge, LIU Chiyang. Approaches and prospects of provenance analysis [J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415. doi: 10.3969/j.issn.1000-0550.2003.03.007

    CrossRef Google Scholar

    [57] 朱筱敏. 沉积岩石学[M]. 4版. 北京: 石油工业出版社, 2008: 90-105.

    Google Scholar

    ZHU Xiaomin. Sedimentary Petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 90-105.

    Google Scholar

    [58] 康春国, 李长安, 邵磊. 江汉平原主要河流沉积物重矿物特征与物源区岩性的响应[J]. 第四纪研究, 2009, 29(2):334-342 doi: 10.3969/j.issn.1001-7410.2009.02.18

    CrossRef Google Scholar

    KANG Chunguo, LI Chang’an, SHAO Lei. Heavy mineral characteristics of river sediments in Jianghan Plain and its response to provenance rock types [J]. Quaternary Sciences, 2009, 29(2): 334-342. doi: 10.3969/j.issn.1001-7410.2009.02.18

    CrossRef Google Scholar

    [59] 胡鹏, 鲍志东, 于兴河, 等. 碎屑重矿物差异与物源演化: 以长岭凹陷乾北地区青三段-姚一段为例[J]. 中国矿业大学学报, 2017, 46(2):375-387

    Google Scholar

    HU Peng, BAO Zhidong, YU Xinghe, et al. Detrital heavy mineral difference and its implication for provenance: a case study of the third member of Qingshankou formation and the first member of Yaojia formation in Qianbei area, Changling sag [J]. Journal of China University of Mining & Technology, 2017, 46(2): 375-387.

    Google Scholar

    [60] 蔡芃睿, 王涛, 王宗起, 等. 大兴安岭中段乐平统-中三叠统沉积物源分析: 来自重矿物组合及碎屑锆石年代学证据[J]. 岩石学报, 2019, 35(11):3549-3564 doi: 10.18654/1000-0569/2019.11.18

    CrossRef Google Scholar

    CAI Pengrui, WANG Tao, WANG Zongqi, et al. Lopingian to Middle Triassic provenance analysis of sedimentary rocks in the middle segment of the Da Hinggan Mountains: evidence from the heavy mineral assemblage and the detrital zircon U-Pb ages [J]. Acta Petrologica Sinica, 2019, 35(11): 3549-3564. doi: 10.18654/1000-0569/2019.11.18

    CrossRef Google Scholar

    [61] 马丽芳. 中国地质图集[M]. 北京: 地质出版社, 2002

    Google Scholar

    MA Lifang. Geological Atlas of China[M]. Beijing: Geological Publishing House, 2002.

    Google Scholar

    [62] 和钟铧, 刘招君, 郭巍. 柴达木盆地北缘大煤沟剖面重矿物分析及其地质意义[J]. 世界地质, 2001, 20(3):279-284,312 doi: 10.3969/j.issn.1004-5589.2001.03.012

    CrossRef Google Scholar

    HE Zhonghua, LIU Zhaojun, GUO Wei. The heavy mineral analysis and its geological significance of Dameigou section in northern Caidam Basin [J]. World Geology, 2001, 20(3): 279-284,312. doi: 10.3969/j.issn.1004-5589.2001.03.012

    CrossRef Google Scholar

    [63] 苗小龙, 杜燕. 与胡修棉的讨论: 水流搬运与沉积过程中掺和作用对碎屑颗粒的重要影响[J]. 古地理学报, 2017, 19(4):648-652 doi: 10.7605/gdlxb.2017.04.050

    CrossRef Google Scholar

    MIAO Xiaolong, DU Yan. Discussion with Hu: significant influence of mixing action to clastic particles during the process of flowing transportation and sedimentation [J]. Journal of Palaeogeography, 2017, 19(4): 648-652. doi: 10.7605/gdlxb.2017.04.050

    CrossRef Google Scholar

    [64] 胡修棉. 物源分析的一个误区: 砂粒在河流搬运过程中的变化[J]. 古地理学报, 2017, 19(1):175-184 doi: 10.7605/gdlxb.2017.01.014

    CrossRef Google Scholar

    HU Xiumian. A misunderstanding in provenance analysis: sand changes of mineral, roundness, and size in flowing-water transportation [J]. Journal of Palaeogeography, 2017, 19(1): 175-184. doi: 10.7605/gdlxb.2017.01.014

    CrossRef Google Scholar

    [65] Morton A C, Hallsworth C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones [J]. Sedimentary Geology, 1994, 90(3-4): 241-256. doi: 10.1016/0037-0738(94)90041-8

    CrossRef Google Scholar

    [66] Morton A C, Hallsworth C. Chapter 7 stability of detrital heavy minerals during burial diagenesis [J]. Developments in Sedimentology, 2007, 58: 215-245.

    Google Scholar

    [67] 蒋玺, 陈文奇, 宁凡, 等. 贵州高原北部河流阶地发育与喀斯特地貌演化[J]. 地理研究, 2021, 40(1):81-92 doi: 10.11821/dlyj020200485

    CrossRef Google Scholar

    JIANG Xi, CHEN Wenqi, NING Fan, et al. River terraces in the northern Guizhou Plateau and their implications for karst landform evolution [J]. Geographical Research, 2021, 40(1): 81-92. doi: 10.11821/dlyj020200485

    CrossRef Google Scholar

    [68] 董铭, 苏怀, 史正涛, 等. 金沙江金江街段河流阶地年代及对河谷水系演化历史的启示[J]. 地理学报, 2018, 73(9):1728-1736 doi: 10.11821/dlxb201809009

    CrossRef Google Scholar

    DONG Ming, SU Huai, SHI Zhengtao, et al. The age of river terraces in the Jinjiangjie reach of the Jinsha River and its implications for valley and drainage evolution [J]. Acta Geographica Sinica, 2018, 73(9): 1728-1736. doi: 10.11821/dlxb201809009

    CrossRef Google Scholar

    [69] 陆洁民, 郭召杰, 赵泽辉, 等. 新生代酒西盆地沉积特征及其与祁连山隆升关系的研究[J]. 高校地质学报, 2004, 10(1):50-61 doi: 10.3969/j.issn.1006-7493.2004.01.004

    CrossRef Google Scholar

    LU Jiemin, GUO Zhaojie, ZHAO Zehui, et al. Cenozoic sedimentation characteristics of Jiuxi Basin and uplift history of northern Qilian Mountain [J]. Geological Journal of China Universities, 2004, 10(1): 50-61. doi: 10.3969/j.issn.1006-7493.2004.01.004

    CrossRef Google Scholar

    [70] 程岩, 刘月, 李富祥, 等. 鸭绿江口及邻近浅海碎屑矿物特征与物源辨识[J]. 地理研究, 2010, 29(11):1950-1960

    Google Scholar

    CHENG Yan, LIU Yue, LI Fuxiang, et al. Detrital mineral characteristics and material source identification in surface sediments of Yalu River estuary and adjacent waters [J]. Geographical Research, 2010, 29(11): 1950-1960.

    Google Scholar

    [71] 牛东风, 李保生, 王丰年, 等. 不同沉积相重矿物组成及其对气候的指示: 以米浪沟湾全新统MGS1层段为例[J]. 实验室研究与探索, 2015, 34(7):7-11 doi: 10.3969/j.issn.1006-7167.2015.07.003

    CrossRef Google Scholar

    NIU Dongfeng, LI Baosheng, WANG Fengnian, et al. Heavy mineral composition and its climatic indication for the MGS1 Segment in the holocene in Milanggouwan [J]. Research and Exploration in Laboratory, 2015, 34(7): 7-11. doi: 10.3969/j.issn.1006-7167.2015.07.003

    CrossRef Google Scholar

    [72] 李艳, 李安春, 黄朋. 大连湾近海表层沉积物重矿物组合分布特征及其物源环境指示[J]. 海洋地质与第四纪地质, 2011, 31(6):13-20

    Google Scholar

    LI Yan, LI Anchun, HUANG Peng. Distribution of heavy mineral assemblages in subsurface sediments of Dalian bay and their implications for provenance and environment [J]. Marine Geology & Quaternary Geology, 2011, 31(6): 13-20.

    Google Scholar

    [73] 马婉仙. 重砂测量与分析[M]. 北京: 地质出版社, 1990

    Google Scholar

    MA Wanxian. Heavy Sand Measurement and Analysis[M]. Beijing: Geological Publishing House, 1990.

    Google Scholar

    [74] 程瑜, 李向前, 赵增玉, 等. 苏北盆地TZK9孔磁性地层及重矿物组合特征研究[J]. 地质力学学报, 2016, 22(4):994-1003 doi: 10.3969/j.issn.1006-6616.2016.04.017

    CrossRef Google Scholar

    CHENG Yu, LI Xiangqian, ZHAO Zengyu, et al. Magnetostratigraphy and heavy minerals records of TZK9 core in Subei Basin [J]. Journal of Geomechanics, 2016, 22(4): 994-1003. doi: 10.3969/j.issn.1006-6616.2016.04.017

    CrossRef Google Scholar

    [75] Milliken K L, Mack L E. Subsurface dissolution of heavy minerals, Frio Formation sandstones of the ancestral Rio Grande Province, South Texas [J]. Sedimentary Geology, 1990, 68(3): 187-199. doi: 10.1016/0037-0738(90)90111-6

    CrossRef Google Scholar

    [76] 李双建, 石永红, 王清晨. 碎屑重矿物分析对库车坳陷白垩: 第三纪物源变化的指示[J]. 沉积学报, 2006, 24(1):28-35 doi: 10.3969/j.issn.1000-0550.2006.01.004

    CrossRef Google Scholar

    LI Shuangjian, SHI Yonghong, WANG Qingchen. The analysis of detrital heavy minerals in cretaceous-tertiary sandstones, Kuqa depression and their implications for provenance [J]. Acta Sedimentologica Sinica, 2006, 24(1): 28-35. doi: 10.3969/j.issn.1000-0550.2006.01.004

    CrossRef Google Scholar

    [77] Smale D, Morton A C. Heavy mineral suites of core samples from the McKee Formation (Eocene-Lower Oligocene), Taranaki: implications for provenance and diagenesis [J]. New Zealand Journal of Geology and Geophysics, 1987, 30(3): 299-306. doi: 10.1080/00288306.1987.10552624

    CrossRef Google Scholar

    [78] 李红, 李飞, 龚峤林, 等. 混积岩中重矿物形貌学特征及物源意义: 以川北寒武系第二统仙女洞组为例[J]. 沉积学报, 2021, 39(3):525-539

    Google Scholar

    LI Hong, LI Fei, GONG Qiaolin, et al. Morphological Characteristics and Provenance Significance of Heavy Minerals in the Mixed Siliciclastic-carbonate Sedimentation: a case study from the Xiannüdong Formation, Cambrian (Series 2), northern Sichuan [J]. Acta Sedimentologica Sinica, 2021, 39(3): 525-539.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1718) PDF downloads(18) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint