2021 Vol. 41, No. 6
Article Contents

FAN Jiahui, DOU Yanguang, ZHAO Jingtao, LI Jun, ZOU Liang, CAI Feng, CHEN Xiaohui, LI Qing. Geochemistry of the water profiles at the slope of East China Sea and Okinawa Trough and its implications[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 102-114. doi: 10.16562/j.cnki.0256-1492.2021072201
Citation: FAN Jiahui, DOU Yanguang, ZHAO Jingtao, LI Jun, ZOU Liang, CAI Feng, CHEN Xiaohui, LI Qing. Geochemistry of the water profiles at the slope of East China Sea and Okinawa Trough and its implications[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 102-114. doi: 10.16562/j.cnki.0256-1492.2021072201

Geochemistry of the water profiles at the slope of East China Sea and Okinawa Trough and its implications

More Information
  • Two water profiles are selected from the northern part of the Okinawa Trough and the elements, such as carbon, chlorine, and boron isotopes and ion concentrations analyzed for investigation of the control factors of the ion and isotope compositions, water source, and modern water exchange process of the water profiles. It is seen that the properties of surface water, subsurface water, and intermediate water in the water profiles are obviously different. The ion concentrations of K+, Ca2+, and SO42− in the ST2 profile increase with water depth, and the vertical changes of δ13C, δ11B, and δ37Cl fluctuate substantially. The vertical changing pattern of ion concentrations, and isotopes along the profile ST19 is opposite to the profile ST2. The surface water (0~100 m) and subsurface water (100~300 m) of the profiles ST2 and ST19 are mainly coming from KSW(Kuroshio Surface Water)and KTW(Kuroshio Tropical Water), affected by CDW(Changjiang Diluted Water)/shelf water, whereas the composition of the intermediate water (300~1000 m) is similar to that of NPIW(North Pacific Intermediate Water) and SCSIW(South China Sea Intermediate Water). There are obvious north-south differences in water composition between the two profiles, owing to the differences in locality, CDW/shelf water transmission path, local upwelling caused by regional topography and the proportions of NPIW and SCSIW in the water profiles.

  • 加载中
  • [1] 林红梅, 林奇, 徐国杰, 等. 离子色谱法测定海水中的阳离子[J]. 化学分析计量, 2011, 20(2):27-29 doi: 10.3969/j.issn.1008-6145.2011.02.007

    CrossRef Google Scholar

    LIN Hongmei, LIN Qi, XU Guojie, et al. Determination of cation in seawater by ion chromatography [J]. Chemical Analysis and Meterage, 2011, 20(2): 27-29. doi: 10.3969/j.issn.1008-6145.2011.02.007

    CrossRef Google Scholar

    [2] Southon J, Noronha A L, Cheng H, et al. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82 [J]. Quaternary Science Reviews, 2012, 33: 32-41. doi: 10.1016/j.quascirev.2011.11.022

    CrossRef Google Scholar

    [3] Nakamura H, Nishina A, Liu Z J, et al. Intermediate and deep water formation in the Okinawa Trough [J]. Journal of Geophysical Research:Oceans, 2013, 118(12): 6881-6893. doi: 10.1002/2013JC009326

    CrossRef Google Scholar

    [4] Chen C T A, Kandasamy S, Chang Y P, et al. Geochemical evidence of the indirect pathway of terrestrial particulate material transport to the Okinawa Trough [J]. Quaternary International, 2017, 441: 51-61. doi: 10.1016/j.quaint.2016.08.006

    CrossRef Google Scholar

    [5] Zhang L, Liu Z, Zhang J, et al. Reevaluation of mixing among multiple water masses in the shelf: An example from the East China Sea [J]. Continental Shelf Research, 2007, 27(15): 1969-1979. doi: 10.1016/j.csr.2007.04.002

    CrossRef Google Scholar

    [6] Bai L L, Zhang J. Clarifying the structure of water masses in East China Sea using low-volume seawater measurement with rare earth elements [J]. Advances in Geosciences, 2008, 18: 169-180.

    Google Scholar

    [7] Lee H, Kim G, Kim J, et al. Tracing the flow rate and mixing ratio of the Changjiang Diluted Water in the northwestern Pacific marginal seas using radium isotopes [J]. Geophysical Research Letters, 2014, 41(13): 4637-4645. doi: 10.1002/2014GL060230

    CrossRef Google Scholar

    [8] Nishina A, Nakamura H, Park J H, et al. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow [J]. Journal of Geophysical Research:Oceans, 2016, 121(8): 6092-6102. doi: 10.1002/2016JC011822

    CrossRef Google Scholar

    [9] Kubota Y, Suzuki N, Kimoto K, et al. Variation in subsurface water temperature and its link to the Kuroshio Current in the Okinawa Trough during the last 38.5 kyr [J]. Quaternary International, 2017, 452: 1-11. doi: 10.1016/j.quaint.2017.06.021

    CrossRef Google Scholar

    [10] Minakawa M, Watanabe Y. Aluminum in the East China Sea and Okinawa Trough, marginal sea areas of the western North Pacific [J]. Journal of Oceanography, 1998, 54(6): 629-640. doi: 10.1007/BF02823283

    CrossRef Google Scholar

    [11] Amakawa H, Sasaki K, Ebihara M. Nd isotopic composition in the central North Pacific [J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4705-4719. doi: 10.1016/j.gca.2009.05.058

    CrossRef Google Scholar

    [12] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987: 1-263.

    Google Scholar

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. East China Sea Geology[M]. Beijing: Science Press, 1987: 1-263.

    Google Scholar

    [13] 窦衍光, 陈晓辉, 李军, 等. 东海外陆架-陆坡-冲绳海槽不同沉积单元底质沉积物成因及物源分析[J]. 海洋地质与第四纪地质, 2018, 38(4):21-31

    Google Scholar

    DOU Yanguang, CHEN Xiaohui, LI Jun, et al. Origin and provenance of the surficial sediments in the subenvironments of the East China Sea [J]. Marine Geology and Quaternary Geology, 2018, 38(4): 21-31.

    Google Scholar

    [14] 高金满, 李国胜, 孙家淞, 等. 冲绳海槽的地形地貌特征[J]. 海洋地质与第四纪地质, 1987, 7(1):51-60

    Google Scholar

    GAO Jinman, LI Guosheng, SUN Jiasong, et al. Geomorphic characteristics of Okinawa Trough [J]. Marine Geology and Quaternary Geology, 1987, 7(1): 51-60.

    Google Scholar

    [15] Dou Y G, Yang S Y, Liu Z X, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: constraints from rare earth element compositions [J]. Marine Geology, 2010, 275(1-4): 212-220. doi: 10.1016/j.margeo.2010.06.002

    CrossRef Google Scholar

    [16] Yu H T, Ma T, Du Y, et al. Genesis of formation water in the northern sedimentary basin of South China Sea: Clues from hydrochemistry and stable isotopes (D, 18O, 37Cl and 81Br) [J]. Journal of Geochemical Exploration, 2019, 196: 57-65. doi: 10.1016/j.gexplo.2018.08.005

    CrossRef Google Scholar

    [17] Xiao Y K, Beary E S, Fassett J D. An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry [J]. International Journal of Mass Spectrometry and Ion Processes, 1988, 85(2): 203-213. doi: 10.1016/0168-1176(88)83016-7

    CrossRef Google Scholar

    [18] Chen C T A, Ruo R, Paid S C, et al. Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan [J]. Continental Shelf Research, 1995, 15(1): 19-39. doi: 10.1016/0278-4343(93)E0001-O

    CrossRef Google Scholar

    [19] Talley L D, Nagata Y, Fujimura M, et al. North Pacific Intermediate Water in the Kuroshio/Oyashio mixed water region [J]. Journal of Physical Oceanography, 1995, 25(4): 475-501. doi: 10.1175/1520-0485(1995)025<0475:NPIWIT>2.0.CO;2

    CrossRef Google Scholar

    [20] Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the last glacial period [J]. Geophysical Research Letters, 2018, 45(17): 9058-9066. doi: 10.1029/2018GL078568

    CrossRef Google Scholar

    [21] 卢汐, 宋金明, 袁华茂, 等. 黑潮主流径海域海水中的无机碳及其对东海陆架区的影响[J]. 海洋与湖沼, 2016, 47(1):16-28

    Google Scholar

    LU Xi, SONG Jinming, YUAN Huamao, et al. Distribution of inorganic carbon parameters in Kuroshio and its impact on adjacent East China Sea shelf [J]. Oceanologia et Limnologia Sinica, 2016, 47(1): 16-28.

    Google Scholar

    [22] Amakawa H, Nozaki Y, Alibo D S, et al. Neodymium isotopic variations in Northwest Pacific waters [J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 715-727. doi: 10.1016/S0016-7037(03)00501-5

    CrossRef Google Scholar

    [23] Alibo D S, Nozaki Y. Dissolved rare earth elements in the eastern Indian Ocean: chemical tracers of the water masses [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(4): 559-576. doi: 10.1016/j.dsr.2003.11.004

    CrossRef Google Scholar

    [24] Shirodkar P V, Xiao Y K, Sarkar A, et al. Influence of air–sea fluxes on chlorine isotopic composition of ocean water: Implications for constancy in δ37Cl—A statistical inference [J]. Environment International, 2006, 32(2): 235-239. doi: 10.1016/j.envint.2005.08.017

    CrossRef Google Scholar

    [25] Jung J, Furutani H, Uematsu M, et al. Atmospheric inorganic nitrogen input via dry, wet, and sea fog deposition to the subarctic western North Pacific Ocean [J]. Atmospheric Chemistry and Physics, 2013, 13: 411-428. doi: 10.5194/acp-13-411-2013

    CrossRef Google Scholar

    [26] Magaritz M, Nadler A, Koyumdjisky H, et al. The use of Na/Cl ratios to trace solute sources in a semiarid zone [J]. Water Resources Research, 1981, 17(3): 602-608. doi: 10.1029/WR017i003p00602

    CrossRef Google Scholar

    [27] 蒋保刚, 闫正, 宋献方, 等. 汉江上游金水河流域河水的化学特征[J]. 环境化学, 2013, 32(6):980-986 doi: 10.7524/j.issn.0254-6108.2013.06.010

    CrossRef Google Scholar

    JIANG Baogang, YAN Zheng, SONG Xianfang, et al. Water chemistry of the Jinshui River Basin in the Upper Han River [J]. Environmental Chemistry, 2013, 32(6): 980-986. doi: 10.7524/j.issn.0254-6108.2013.06.010

    CrossRef Google Scholar

    [28] Cui B L, Li X Y, Wei X H. Isotope and hydrochemistry reveal evolutionary processes of lake water in Qinghai Lake [J]. Journal of Great Lakes Research, 2016, 42(3): 580-587. doi: 10.1016/j.jglr.2016.02.007

    CrossRef Google Scholar

    [29] Kim Y, Lee K S, Koh D C, et al. Hydrogeochemical and Isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea [J]. Journal of Hydrology, 2003, 270(3-4): 282-294. doi: 10.1016/S0022-1694(02)00307-4

    CrossRef Google Scholar

    [30] 周胜杰, 张洪海, 杨桂朋. 东海PM2.5和PM10中水溶性离子的组成与化学特性[J]. 中国环境科学, 2018, 38(3):900-909 doi: 10.3969/j.issn.1000-6923.2018.03.012

    CrossRef Google Scholar

    ZHOU Shengjie, ZHANG Honghai, YANG Guipeng. Distributions and chemical characteristics of water soluble ions in PM2.5 and PM10 over the East China Sea [J]. China Environmental Science, 2018, 38(3): 900-909. doi: 10.3969/j.issn.1000-6923.2018.03.012

    CrossRef Google Scholar

    [31] 江峰, 李强, 吉勤克补子, 等. 贵州省岩溶地区饮用天然矿泉水化学特征及其宏量组分来源分析[J]. 贵州地质, 2019, 36(2):173-179 doi: 10.3969/j.issn.1000-5943.2019.02.010

    CrossRef Google Scholar

    JIANG Feng, LI Qiang, JI Qinkebuzi, et al. The chemical characteristics of the potable natural mineral water and its major components source analysis of the karst area in Guizhou province [J]. Guizhou Geology, 2019, 36(2): 173-179. doi: 10.3969/j.issn.1000-5943.2019.02.010

    CrossRef Google Scholar

    [32] Wang H B, Shooter D. Water soluble ions of atmospheric aerosols in three New Zealand cities: seasonal changes and sources [J]. Atmospheric Environment, 2001, 35(34): 6031-6040. doi: 10.1016/S1352-2310(01)00437-X

    CrossRef Google Scholar

    [33] 殷美雪. 中国中东部地区大气湿沉降中的离子化学特征[D]. 上海师范大学硕士学位论文, 2015: 1-67. ]

    Google Scholar

    YIN Meixue. Ion chemical characteristics and elements of morphological characteristics in China’s central[D]. Master Dissertation of Shanghai Normal University, 2015: 1-67

    Google Scholar

    [34] Wong G T F, Chao S Y, Li Y H, et al. The Kuroshio edge exchange processes (KEEP) study: an introduction to hypotheses and highlights [J]. Continental Shelf Research, 2000, 20(4-5): 335-347. doi: 10.1016/S0278-4343(99)00075-8

    CrossRef Google Scholar

    [35] Hung J J, Chen C H, Gong G C, et al. Distributions, stoichiometric patterns and cross-shelf exports of dissolved organic matter in the East China Sea [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(6-7): 1127-1145. doi: 10.1016/S0967-0645(03)00014-6

    CrossRef Google Scholar

    [36] 林久人, 祁建华, 谢丹丹, 等. 海洋降水中无机离子浓度及湿沉降通量: 中国海及西北太平洋降水的研究[J]. 中国环境科学, 2017, 37(5):1706-1715 doi: 10.3969/j.issn.1000-6923.2017.05.013

    CrossRef Google Scholar

    LIN Jiuren, QI Jianhua, XIE Dandan, et al. The concentrations and wet depositions fluxes of inorganic ions in oceanic precipitation-Study on precipitation over the China Sea and Northwest Pacific Ocean [J]. China Environmental Science, 2017, 37(5): 1706-1715. doi: 10.3969/j.issn.1000-6923.2017.05.013

    CrossRef Google Scholar

    [37] 余伟, 杨海全, 郭建阳, 等. 贵州草海水化学特征及离子来源分析[J]. 地球与环境, 2021, 49(1):32-41

    Google Scholar

    YU Wei, YANG Haiquan, GUO Jianyang, et al. Hydrochemical characteristics and major ion sources of Lake Caohai in Guizhou province [J]. Earth and Environment, 2021, 49(1): 32-41.

    Google Scholar

    [38] Sibuet J C, Letouzey J, Barbier F, et al. Back arc extension in the Okinawa Trough [J]. Journal of Geophysical Research:Solid Earth, 1987, 92(B13): 14041-14063. doi: 10.1029/JB092iB13p14041

    CrossRef Google Scholar

    [39] 吴自银, 李家彪, 金翔龙, 等. 冲绳海槽海底地形地貌界限特征及影响因素[J]. 中国科学:地球科学, 2014, 57(8):1185-1896

    Google Scholar

    WU Ziyin, LI Jiabiao, JIN Xianglong, et al. Distribution, features, and influence factors of the submarine topographic boundaries of the Okinawa Trough [J]. Science China Earth Sciences, 2014, 57(8): 1185-1896.

    Google Scholar

    [40] Hatta M, Zhang J. Possible source of advected water mass and residence times in the multi-structured Sea of Japan using rare earth elements [J]. Geophysical Research Letters, 2006, 33(16): L16606. doi: 10.1029/2006GL026537

    CrossRef Google Scholar

    [41] 杜金秋, 陈敏, 曹建平, 等. 南黄海和东海海水18O的组成及其意义[J]. 海洋与湖沼, 2012, 43(6):1057-1066 doi: 10.11693/hyhz201206005005

    CrossRef Google Scholar

    DU Jinqiu, CHEN Min, CAO Jianping, et al. Oxygen isotope in seawater and its hydrological implication in the southern Yellow Sea and the East China Sea [J]. Oceanologia et Limnologia Sinica, 2012, 43(6): 1057-1066. doi: 10.11693/hyhz201206005005

    CrossRef Google Scholar

    [42] 杨会, 王华, 吴夏, 等. 样品采集和保存方法对水中溶解无机碳同位素分馏的影响[J]. 中国岩溶, 2015, 34(6):642-647 doi: 10.11932/karst20150614

    CrossRef Google Scholar

    YANG Hui, WANG Hua, WU Xia, et al. The influence of different pretreatment methods on the δ13C value of dissolved inorganic carbon in water [J]. Carsologica Sinica, 2015, 34(6): 642-647. doi: 10.11932/karst20150614

    CrossRef Google Scholar

    [43] Chen X Y, Tung K K. Varying planetary heat sink led to global-warming slowdown and acceleration [J]. Science, 2014, 345(6199): 897-903.

    Google Scholar

    [44] 杨杰东, 徐士进. 同位素与全球环境变化[M]. 北京: 地质出版社, 2007: 28-30.

    Google Scholar

    YANG Jiedong, XU Shijin. Isotopes and Global Environmental Changes[M]. Beijing: Geological Publishing House, 2007: 28-30.

    Google Scholar

    [45] Anderson T F, Arthur M A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems[M].Stable Isotopes in Sedimentary Geology. SEPM, 1983: 1.1-1.151.

    Google Scholar

    [46] Hoffman P F, Kaufman A J, Halverson G P, et al. A neoproterozoic snowball earth [J]. Science, 1998, 281(5381): 1342-1346. doi: 10.1126/science.281.5381.1342

    CrossRef Google Scholar

    [47] Mcnichol A P, Druffel E R M. Variability of the δ13C of dissolved inorganic carbon at a site in the north Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3589-3592. doi: 10.1016/0016-7037(92)90402-5

    CrossRef Google Scholar

    [48] 曹敏, 蒋勇军, 蒲俊兵, 等. 重庆南山老龙洞地下河流域岩溶地下水DIC和δ13CDIC及其流域碳汇变化特征[J]. 中国岩溶, 2012, 31(2):145-153 doi: 10.3969/j.issn.1001-4810.2012.02.006

    CrossRef Google Scholar

    CAO Min, JIANG Yongjun, PU Junbing, et al. Variations in DIC and δ13CDIC of the karst groundwater and in carbon sink of Laolongdong subterranean stream basin at Nanshan, Chongqing [J]. Carsologica Sinica, 2012, 31(2): 145-153. doi: 10.3969/j.issn.1001-4810.2012.02.006

    CrossRef Google Scholar

    [49] 李银川, 董戈, 雷昉, 等. 硼同位素分馏的实验理论认识和矿床地球化学研究进展[J]. 地学前缘, 2020, 27(3):14-28

    Google Scholar

    LI Yinchuan, DONG Ge, LEI Fang, et al. Experimental and theoretical understanding of boron isotope fractionation and advances in ore deposit geochemistry study [J]. Earth Science Frontiers, 2020, 27(3): 14-28.

    Google Scholar

    [50] Nomura M, Okamoto M, Kakihana H. Determination of boron content and boron isotopic ratio of seawater samples [J]. Bulletin of the Society of Sea Water Science, Japan, 1984, 38(1): 28-33.

    Google Scholar

    [51] Marschall H R, Foster G L. Boron isotopes in the Earth and planetary sciences: a short history and introduction[M]. Advances in Isotope Geochemistry. Switzerland: Springer, 2018: 1-11.

    Google Scholar

    [52] Rustad J R, Bylaska E J, Jackson V E, et al. Calculation of boron-isotope fractionation between B(OH)3 and B(OH)4- [J]. Geochimica et Cosmochimica Acta, 2010, 74(10): 2843-2850. doi: 10.1016/j.gca.2010.02.032

    CrossRef Google Scholar

    [53] Nir O, Vengosh A, Harkness J S, et al. Direct measurement of the boron isotope fractionation factor: reducing the uncertainty in reconstructing ocean paleo-pH [J]. Earth and Planetary Science Letters, 2015, 414: 1-5. doi: 10.1016/j.jpgl.2015.01.006

    CrossRef Google Scholar

    [54] 刘茜, 王奕菁, 魏海珍. 稳定氯同位素地球化学研究进展[J]. 地学前缘, 2020, 27(3):29-41

    Google Scholar

    LIU Xi, WANG Yijing, WEI Haizhen. Advances in stable chlorine isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 29-41.

    Google Scholar

    [55] Barnes J D, Paulick H, Sharp Z D, et al. Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209) [J]. Lithos, 2009, 110(1-4): 83-94. doi: 10.1016/j.lithos.2008.12.004

    CrossRef Google Scholar

    [56] Selverstone J, Sharp Z D. Chlorine isotope behavior during prograde metamorphism of sedimentary rocks [J]. Earth and Planetary Science Letters, 2015, 417: 120-131. doi: 10.1016/j.jpgl.2015.02.030

    CrossRef Google Scholar

    [57] Bonifacie M, Jendrzejewski N, Agrinier P, et al. The chlorine isotope composition of Earth’s mantle [J]. Science, 2008, 319(5869): 1518-1520. doi: 10.1126/science.1150988

    CrossRef Google Scholar

    [58] Bolin B, Degens E T, Kempe S, et al. The Global Carbon Cycle[M]. NY: John Wiley Sons, 1978: 35-38.

    Google Scholar

    [59] Ishikawa T, Nakamura E. Boron isotope systematics of marine sediments [J]. Earth and Planetary Science Letters, 1993, 117(3-4): 567-580. doi: 10.1016/0012-821X(93)90103-G

    CrossRef Google Scholar

    [60] Eastoe C J, Peryt T M, Petrychenko O Y, et al. Stable chlorine isotopes in Phanerozoic evaporites [J]. Applied Geochemistry, 2007, 22(3): 575-588. doi: 10.1016/j.apgeochem.2006.12.012

    CrossRef Google Scholar

    [61] Sharp Z. Principles of Stable Isotope Geochemistry[M]. Upper Saddle River, NJ: Pearson Education, 2007: 1-334.

    Google Scholar

    [62] Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean [J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6

    CrossRef Google Scholar

    [63] Yang D Z, Yin B S, Liu Z L, et al. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer [J]. Journal of Geophysical Research:Oceans, 2011, 116(C5): C05015.

    Google Scholar

    [64] Behrens M K, Pahnke K, Paffrath R, et al. Rare earth element distributions in the West Pacific: Trace element sources and conservative vs. non-conservative behavior [J]. Earth and Planetary Science Letters, 2018, 486: 166-177. doi: 10.1016/j.jpgl.2018.01.016

    CrossRef Google Scholar

    [65] Talley L D, Reid J L, Robbins P E. Data-based meridional overturning streamfunctions for the global ocean [J]. Journal of Climate, 2003, 16(19): 3213-3226. doi: 10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2

    CrossRef Google Scholar

    [66] Niwa Y, Hibiya T. Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations [J]. Journal of Oceanography, 2011, 67(4): 493-502. doi: 10.1007/s10872-011-0052-1

    CrossRef Google Scholar

    [67] Shinjo R. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough–Ryukyu arc system [J]. Chemical Geology, 1999, 157(1-2): 69-88. doi: 10.1016/S0009-2541(98)00199-5

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(2786) PDF downloads(164) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint