2022 Vol. 42, No. 3
Article Contents

GAO Jingjing, LIU Jihua, ZHANG Hui, YAN Shijuan, WANG Hongmin, CUI Jingjing, HE Lianhua. Geochemistry and sources of rare earth elements in cobalt-rich crusts from the Caiwei and Xufu seamounts, West Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302
Citation: GAO Jingjing, LIU Jihua, ZHANG Hui, YAN Shijuan, WANG Hongmin, CUI Jingjing, HE Lianhua. Geochemistry and sources of rare earth elements in cobalt-rich crusts from the Caiwei and Xufu seamounts, West Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302

Geochemistry and sources of rare earth elements in cobalt-rich crusts from the Caiwei and Xufu seamounts, West Pacific Ocean

  • Using the testing methods of XRD, ICP-OES and ICP-MS, the mineral composition, major and minor elements contents of cobalt-rich crusts collecting from the Caiwei Guyot and Xufu Guyot in the West Pacific Ocean have been determined. Based on the data, we discussed in this paper the geochemical characteristics and material sources of the REE. It is observed that the cobalt-rich crust is dominated by the crystalline mineral of vernadites, accompanied by the auxiliary minerals of quartz, plagioclase, potassium feldspar and carbon fluoride apatite. Amorphous ferric minerals also occur in certain amounts in the crusts. In terms of chemical composition, Mn contents change within 16.20%~26.62%, and Fe contents 8.56%~18.19%, which are the highest among the others. Phosphatization is observed in the old crust layers. REE are enriched in the cobalt-rich crusts. LREE are higher than HREE. REE contents are as high as 1 842~2 854 µg/g, in which Ce accounted for nearly 50%. Moreover, it is found that REE contents in the old layers are higher than that in the new layers, and it is believed that phosphatization in the old layers might play an active role in the REE distribution pattern. And REE diagrams show that there are positive Ce anomalies but no Eu anomalies, so Ce is relatively enriched. Meanwhile, REE show positive correlation with Ce, Y, CaO, P2O5, Ba and Sr, negative correlation with Fe, Al2O3, Na2O, K2O, MgO, TiO2, Pb and V, but no correlation with Mn, Co, Cu, Ni and Zn. By the way, the elements of the cobalt-rich crusts may be classified into four groups by clustering analysis. ①Phosphate group including REE, Ce, Y, CaO, P2O5, Ba and Sr. ② Mn group including Mn, Co, Cu, Ni and Zn. ③ Fe group including Fe, TiO2, Pb and V. ④ Detritus group including Al2O3, Na2O, K2O and MgO. In conclusion, cobalt-rich crusts from the Caiwei Guyot and Xufu Guyot of the West Pacific Ocean are hydrogenetic in origin, and REE are precipitated together with phosphate group in the seawater, that caused the enrichment of REE in the cobalt-rich crusts.

  • 加载中
  • [1] Marino E, González F J, Somoza L, et al. Strategic and rare elements in Cretaceous-Cenozoic cobalt-rich ferromanganese crusts from seamounts in the Canary Island Seamount Province (northeastern tropical Atlantic) [J]. Ore Geology Reviews, 2017, 87: 41-61. doi: 10.1016/j.oregeorev.2016.10.005

    CrossRef Google Scholar

    [2] Josso P, Rushton J, Lusty P, et al. Late Cretaceous and Cenozoic paleoceanography from north-east Atlantic ferromanganese crust microstratigraphy [J]. Marine Geology, 2020, 422: 106122. doi: 10.1016/j.margeo.2020.106122

    CrossRef Google Scholar

    [3] Gueguen B, Rouxel O, Fouquet Y. Nickel isotopes and rare earth elements systematics in marine hydrogenetic and hydrothermal ferromanganese deposits [J]. Chemical Geology, 2021, 560: 119999. doi: 10.1016/j.chemgeo.2020.119999

    CrossRef Google Scholar

    [4] Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts [J]. Chemical Geology, 2018, 493: 224-233. doi: 10.1016/j.chemgeo.2018.05.045

    CrossRef Google Scholar

    [5] Zawadzki D, Maciąg Ł, Kotliński R A, et al. Geochemistry of cobalt-rich ferromanganese crusts from the Perth Abyssal Plain (E Indian Ocean) [J]. Ore Geology Reviews, 2018, 101: 520-531. doi: 10.1016/j.oregeorev.2018.08.004

    CrossRef Google Scholar

    [6] Astakhova N V. Noble metals in ferromanganese crusts from marginal seas of the Northwest Pacific [J]. Marine Geology, 2017, 57(4): 618-627.

    Google Scholar

    [7] Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier Ltd. , 2014: 273-291.

    Google Scholar

    [8] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001

    CrossRef Google Scholar

    [9] Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions [J]. Ore Geology Reviews, 2015, 68: 97-116. doi: 10.1016/j.oregeorev.2014.12.011

    CrossRef Google Scholar

    [10] Konstantinova N, Hein J R, Mizell K, et al. Changes in sediment source areas to the Amerasia Basin, Arctic Ocean, over the past 5.5 million years based on radiogenic isotopes (Sr, Nd, Pb) of detritus from ferromanganese crusts [J]. Marine Geology, 2020, 428: 106280. doi: 10.1016/j.margeo.2020.106280

    CrossRef Google Scholar

    [11] Jiang X D, Sun X M, Chou Y M, et al. Geochemistry and origins of carbonate fluorapatite in seamount Fe-Mn crusts from the Pacific Ocean [J]. Marine Geology, 2020, 423: 106135. doi: 10.1016/j.margeo.2020.106135

    CrossRef Google Scholar

    [12] Novikov G V, Mel’nikov M E, Bogdanova O Y, et al. Nature of Co-bearing ferromanganese crusts of the Magellan seamounts (Pacific Ocean): communication 1. Geology, mineralogy, and geochem-istry [J]. Lithology and Mineral Resources, 2014, 49(1): 1-22. doi: 10.1134/S0024490213060072

    CrossRef Google Scholar

    [13] Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 110: 1-19. doi: 10.1016/j.dsr.2015.11.006

    CrossRef Google Scholar

    [14] Surya P L, Ray D, Nagender N B, et al. Anomalous phase association of REE in ferromanganese crusts from Indian mid-oceanic ridges: Evidence for large scale dispersion of hydrothermal iron [J]. Chemical Geology, 2020, 549: 119679. doi: 10.1016/j.chemgeo.2020.119679

    CrossRef Google Scholar

    [15] Mikhailik P E, Mikhailik E V, Zarubina N V, et al. Distribution of rare-earth elements and yttrium in hydrothermal sedimentary ferromanganese crusts of the Sea of Japan (from phase analysis results) [J]. Russian Geology and Geophysics, 2017, 58(12): 1530-1542. doi: 10.1016/j.rgg.2017.11.013

    CrossRef Google Scholar

    [16] Khanchuk A I, Mikhailik P E, Mikhailik E V, et al. Peculiarities of the distribution of rare-earth elements and yttrium in mineral phases of the ferromanganese crusts from the Detroit Guyot (Pacific Ocean) [J]. Doklady Earth Sciences, 2015, 465(4): 1243-1247.

    Google Scholar

    [17] Mohwinkel D, Kleint C, Koschinsky A. Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores [J]. Applied Geochemistry, 2014, 43: 13-21. doi: 10.1016/j.apgeochem.2014.01.010

    CrossRef Google Scholar

    [18] Koschinsky A, Hein J R, Kraemer D, et al. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach [J]. Chemical Geology, 2020, 539: 119426. doi: 10.1016/j.chemgeo.2019.119426

    CrossRef Google Scholar

    [19] Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation [J]. Marine Geology, 2003, 198(3-4): 331-351. doi: 10.1016/S0025-3227(03)00122-1

    CrossRef Google Scholar

    [20] Koschinsky A, Halbach P. Sequential leaching of marine ferroman-ganese precipitates: Genetic implications [J]. Geochimica et Cosm-ochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4

    CrossRef Google Scholar

    [21] Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific ocean: Their implications for crust genesis [J]. Marine Geology, 1997, 136(3-4): 277-297. doi: 10.1016/S0025-3227(96)00064-3

    CrossRef Google Scholar

    [22] 任向文, 石学法, 朱爱美, 等. 麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态[J]. 吉林大学学报:地球科学版, 2011, 41(3):707-714

    Google Scholar

    REN Xiangwen, SHI Xuefa, ZHU Aimei, et al. Existing phase of rare earth elements in Co-rich Fe-Mn crusts from seamount MK of Magellan Seamount cluster [J]. Journal of Jilin University:Earth Science Edition, 2011, 41(3): 707-714.

    Google Scholar

    [23] 杨胜雄, 龙晓军, 祁奇, 等. 西太平洋富钴结壳矿物学和地球化学特征: 以麦哲伦海山和马尔库斯-威克海山富钴结壳为例[J]. 中国海洋大学学报, 2016, 46(2):105-116

    Google Scholar

    YANG Shengxiong, LONG Xiaojun, QI Qi, et al. The mineralogical and geochemical characteristics of co-rich crusts from the western Pacific: Taking the co-rich crusts from Magellan and Marcus-wake seamounts as an example [J]. Periodical of Ocean University of China, 2016, 46(2): 105-116.

    Google Scholar

    [24] 任江波, 何高文, 姚会强, 等. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义[J]. 地球科学, 2016, 41(10):1745-1757

    Google Scholar

    REN Jiangbo, HE Gaowen, YAO Huiqiang, et al. Geochemistry and significance of REE and PGE of the cobalt-rich crusts from west Pacific Ocean seamounts [J]. Earth Science, 2016, 41(10): 1745-1757.

    Google Scholar

    [25] 潘家华, 刘淑琴, 杨忆, 等. 西太平洋海山磷酸盐的常量、微量和稀土元素地球化学研究[J]. 地质论评, 2002, 48(5):534-541 doi: 10.3321/j.issn:0371-5736.2002.05.012

    CrossRef Google Scholar

    PAN Jiahua, LIU Shuqin, YANG Yi, et al. Research on geochemical characteristics of major, trace and Rare-Earth Elements in phosphates from the west Pacific Seamounts [J]. Geological Review, 2002, 48(5): 534-541. doi: 10.3321/j.issn:0371-5736.2002.05.012

    CrossRef Google Scholar

    [26] Bonatti E, kraemer T F, Rydell H. Classification and genesis of submarine iron-manganese deposits[C]//Ferromanganese Deposits on the Ocean Floor. Palisades: Lamont Doherty Geological Observatory of Columbia University, 1972: 149-166.

    Google Scholar

    [27] 王中刚, 于学元, 赵振华, 等. 稀土元素地球化学[M]. 北京: 科学出版社, 1989: 1-535

    Google Scholar

    WANG Zhonggang, YU Xueyuan, ZHAO Zhenhua, et al. Rare earth elements geochemistry[M]. Beijing: Science Publishing House, 1989: 1-535.

    Google Scholar

    [28] 何高文, 孙晓明, 杨胜雄, 等. 太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义[J]. 中国地质, 2011, 38(2):462-472 doi: 10.3969/j.issn.1000-3657.2011.02.020

    CrossRef Google Scholar

    HE Gaowen, SUN Xiaoming, YANG Shengxiong, et al. A comparison of REE geochemistry between polymetallic nodules and cobalt-rich crusts in the Pacific Ocean [J]. Geology in China, 2011, 38(2): 462-472. doi: 10.3969/j.issn.1000-3657.2011.02.020

    CrossRef Google Scholar

    [29] 崔迎春, 刘季花, 任向文, 等. 中太平洋M海山富钴结壳稀土元素地球化学[J]. 中国稀土学报, 2008, 26(6):760-768 doi: 10.3321/j.issn:1000-4343.2008.06.018

    CrossRef Google Scholar

    CUI Yingchun, LIU Jihua, REN Xiangwen, et al. Geochemistry of rare earth elements in cobalt-rich crusts from the Mid-Pacific M Seamount [J]. Journal of the Chinese Rare Earth Society, 2008, 26(6): 760-768. doi: 10.3321/j.issn:1000-4343.2008.06.018

    CrossRef Google Scholar

    [30] Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferromanganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    CrossRef Google Scholar

    [31] 何高文, 薛婷, 孙晓明, 等. 西太平洋富钴结壳元素组合特征及其地质意义[J]. 矿物岩石地球化学通报, 2005, 24(2):125-129 doi: 10.3969/j.issn.1007-2802.2005.02.006

    CrossRef Google Scholar

    HE Gaowen, XUE Ting, SUN Xiaoming, et al. The elemental association characterisitics and the geological significance of cobalt-rich Nodules in the west Pacific Ocean [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(2): 125-129. doi: 10.3969/j.issn.1007-2802.2005.02.006

    CrossRef Google Scholar

    [32] Halbach P E, Jahn A, Cherkashov G. Marine co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining. Cham: Springer, 2017: 65-140.

    Google Scholar

    [33] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    CrossRef Google Scholar

    [34] 高晶晶, 刘季花, 李先国, 等. 富钴结壳中稀土元素化学相态分析方法及其应用[J]. 分析化学, 2015, 43(2):1895-1900

    Google Scholar

    GAO Jingjing, LIU Jihua, LI Xianguo, et al. Chemical phase analysis of rare earth elements in cobalt-rich crusts and its application [J]. Chinese Journal of Analytical Chemistry, 2015, 43(2): 1895-1900.

    Google Scholar

    [35] 高晶晶, 刘季花, 张辉, 等. 太平洋海山富钴结壳中铂族元素赋存状态与富集机理[J]. 海洋学报, 2019, 41(8):115-124

    Google Scholar

    GAO Jingjing, LIU Jihua, Zhang Hui, et al. Occurrence phase and enrichment mechanism of platinum group elements in the Pacific cobalt-rich Crusts [J]. Acta Oceanologica Sinica, 2019, 41(8): 115-124.

    Google Scholar

    [36] Hein J R. Cobalt-rich ferromanganese crusts: Global distribution, composition, origin and research activities[C]//Minerals Other than Polymetallic Nodules of the International Seabed Area. Kingston Jamaica: International Seabed Authority, 2004: 188-256.

    Google Scholar

    [37] Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 2000: 239-279.

    Google Scholar

    [38] Koschinsky A, Stascheit A, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts [J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4079-4094. doi: 10.1016/S0016-7037(97)00231-7

    CrossRef Google Scholar

    [39] Pan J H, De Carlo E H, Yang Y, et al. Effect of phosphatization on element concentration of cobalt-rich ferromanganese crusts [J]. Acta Geologica Sinica, 2005, 79(3): 349-355. doi: 10.1111/j.1755-6724.2005.tb00900.x

    CrossRef Google Scholar

    [40] 任江波, 何高文, 姚会强, 等. 磷酸盐化作用对富钴结壳中稀土元素的影响[J]. 海洋地质与第四纪地质, 2017, 37(2):33-43

    Google Scholar

    REN Jiangbo, HE Gaowen, YAO Huiqiang, et al. The effects of phosphatization on the REY of co-rich Fe-Mn crusts [J]. Marine Geology & Quaternary Geology, 2017, 37(2): 33-43.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(1992) PDF downloads(29) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint