2022 Vol. 42, No. 1
Article Contents

SONG Xiaoshuai, SUN Zhiwen, ZHU Chaoqi, FAN Zhihan, ZHU Na, JIA Yonggang, YU Kaining. A review on deepwater landslide[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 222-235. doi: 10.16562/j.cnki.0256-1492.2021062701
Citation: SONG Xiaoshuai, SUN Zhiwen, ZHU Chaoqi, FAN Zhihan, ZHU Na, JIA Yonggang, YU Kaining. A review on deepwater landslide[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 222-235. doi: 10.16562/j.cnki.0256-1492.2021062701

A review on deepwater landslide

More Information
  • Human engineering activities under the sea, such as the exploitation of deep-water oil and gas, the trial production of marine gas hydrates, and the construction of submarine pipelines, are rapidly increasing with time. They have attracted great attention from the geosociety since deep-sea geohazards often occur with those submarine resource extraction and engineering activities. Landslide is a kind of geohazard often happened in the deep sea, so the instability study of deep-sea landslides has become an important subject of marine scientific research. This paper is devoted to the research status and progress of deep-sea landslides both at home and abroad, and the morphological classification as well as research methods and means. The effects of earthquake, fault activity and gas hydrate decomposition on the instability of deep-sea slopes are discussed. In the past decade, with the emergence of some new research methods, the research focus of deep-sea landslide has shifted from the morphological classification to the trigger mechanisms and in-situ observation of deep-sea landslides. However, field investigation, physical simulation and numerical simulation still remain as the main means for the study of deep-sea landslides, and unconventional techniques, such as ROV/HOV are also gradually applied. Deep-sea landslides are usually caused by joint internal and external geological and hydrodynamic factors. The coupling effect of trigger mechanisms and the impact of new trigger mechanisms are still the focuses for future researches.

  • 加载中
  • [1] Randolph M F, Gaudin C, Gourvenec S M, et al. Recent advances in offshore geotechnics for deep water oil and gas developments [J]. Ocean Engineering, 2011, 38(7): 818-834. doi: 10.1016/j.oceaneng.2010.10.021

    CrossRef Google Scholar

    [2] Thibodeaux L J, Valsaraj K T, John V T, et al. Marine oil fate: Knowledge gaps, basic research, and development needs; A perspective based on the deepwater horizon spill [J]. Environmental Engineering Science, 2011, 28(2): 87-93. doi: 10.1089/ees.2010.0276

    CrossRef Google Scholar

    [3] Vanneste M, Sultan N, Garziglia S, et al. Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations [J]. Marine Geology, 2014, 352: 183-214. doi: 10.1016/j.margeo.2014.01.005

    CrossRef Google Scholar

    [4] Yuan F, Li L L, Guo Z, et al. Landslide impact on submarine pipelines: Analytical and numerical analysis [J]. Journal of Engineering Mechanics, 2015, 141(2): 04014109. doi: 10.1061/(ASCE)EM.1943-7889.0000826

    CrossRef Google Scholar

    [5] Sultan N, Voisset M, Marsset B, et al. Potential role of compressional structures in generating submarine slope failures in the Niger Delta [J]. Marine Geology, 2007, 237(3-4): 169-190. doi: 10.1016/j.margeo.2006.11.002

    CrossRef Google Scholar

    [6] 朱超祁, 贾永刚, 刘晓磊, 等. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6):153-163

    Google Scholar

    ZHU Chaoqi, JIA Yonggang, LIU Xiaolei, et al. Classification and genetic machanism of submarine landslide: a review [J]. Marine Geology & Quaternary Geology, 2015, 35(6): 153-163.

    Google Scholar

    [7] Jeong S W, Leroueil S, Locat J. Applicability of power law for describing the rheology of soils of different origins and characteristics [J]. Canadian Geotechnical Journal, 2009, 46(9): 1011-1023. doi: 10.1139/T09-031

    CrossRef Google Scholar

    [8] 董友扣, 马家杰, 王栋, 等. 深海滑坡灾害的物质点法模拟[J]. 海洋工程, 2019, 37(5):141-147

    Google Scholar

    DONG Youkou, MA Jiajie, WANG Dong, et al. Investigation of landslide in deep sea using material point method [J]. The Ocean Engineering, 2019, 37(5): 141-147.

    Google Scholar

    [9] 汪发武. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理[J]. 工程地质学报, 2019, 27(1):98-107

    Google Scholar

    WANG Fawu. Liquefactions caused by structure collapse and grain crushing of soils in rapid and long runout landslides triggered by earthquakes [J]. Journal of Engineering Geology, 2019, 27(1): 98-107.

    Google Scholar

    [10] Heezen B C, Ewing W M. Turbidity currents and submarine slumps, and the 1929 Grand Banks [Newfoundland] earthquake [J]. American Journal of Science, 1952, 250(12): 849-873. doi: 10.2475/ajs.250.12.849

    CrossRef Google Scholar

    [11] 陈自生. 海底滑坡问题的初义[M]. 北京: 中国铁道出版社, 1988: 154-160

    Google Scholar

    CHEN Zisheng. A preliminary discussion of the research on submrne landslides[M]. Beijing: China Railway Publishing House, 1988: 154-160.

    Google Scholar

    [12] PRIOR D B, 金波. 海底滑坡: 形态和命名[J]. 海洋石油, 1983, 3(6):1-5

    Google Scholar

    PRIOR D B, JIN Bo. Submarine landslides: morphology and naming [J]. Offshore Oil, 1983, 3(6): 1-5.

    Google Scholar

    [13] Cruden D M, Varnes D J. Landslide Types and Processes[Z]. Washington: US National Research Council, 1996, 247: 36-75.

    Google Scholar

    [14] Hampton M A, Lee H J, Locat J. Submarine landslides [J]. Reviews of Geophysics, 1996, 34(1): 33-59. doi: 10.1029/95RG03287

    CrossRef Google Scholar

    [15] Bull S, Cartwright J, Huuse M. A review of kinematic indicators from mass-transport complexes using 3D seismic data [J]. Marine and Petroleum Geology, 2009, 26(7): 1132-1151. doi: 10.1016/j.marpetgeo.2008.09.011

    CrossRef Google Scholar

    [16] 秦磊, 毛金昕, 倪凤玲, 等. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6):632-642

    Google Scholar

    QIN Lei, MAO Jinxin, NI Fengling, et al. A brief introduction to deep-water mass-transport complexes: Structures, genetic classifications and identification methods [J]. Advances in Earth Science, 2020, 35(6): 632-642.

    Google Scholar

    [17] Varnes D J. Slope movement Types and Processes[Z]. Washington: Transportation Research Board, 1978: 11-33.

    Google Scholar

    [18] Canals M, Lastras G, Urgeles R, et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project [J]. Marine Geology, 2004, 213(1-4): 9-72. doi: 10.1016/j.margeo.2004.10.001

    CrossRef Google Scholar

    [19] Li J, Li W, Alves T M, et al. Different origins of seafloor undulations in a submarine canyon system, northern South China Sea, based on their seismic character and relative location [J]. Marine Geology, 2019, 413: 99-111. doi: 10.1016/j.margeo.2019.04.007

    CrossRef Google Scholar

    [20] Li W, Alves T M, Wu S G, et al. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea) [J]. Earth and Planetary Science Letters, 2016, 451: 272-284. doi: 10.1016/j.jpgl.2016.07.007

    CrossRef Google Scholar

    [21] 贾永刚, 单红仙. 黄河口海底斜坡不稳定性调查研究[J]. 中国地质灾害与防治学报, 2000, 11(1):1-5 doi: 10.3969/j.issn.1003-8035.2000.01.001

    CrossRef Google Scholar

    JIA Yonggang, SHAN Hongxian. Investigation and study of slope unstability of subaqueous delta of modern Yellow River [J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(1): 1-5. doi: 10.3969/j.issn.1003-8035.2000.01.001

    CrossRef Google Scholar

    [22] 王大伟, 吴时国, 秦志亮, 等. 南海陆坡大型块体搬运体系的结构与识别特征[J]. 海洋地质与第四纪地质, 2009, 29(5):65-72

    Google Scholar

    WANG Dawei, WU Shiguo, QIN Zhiliang, et al. Architecture and identification of large quaternary mass transport depositions in the slope of South China Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(5): 65-72.

    Google Scholar

    [23] Weimer P, Slatt R M. Introduction to the petroleum geology of deep-water settings[C]//AAPG Studies in Geology 57. Tulsa: SEPM Special Publication, 2007.

    Google Scholar

    [24] Shanmugam G, Wang Y. The landslide problem [J]. Journal of Palaeogeography, 2015, 4(2): 109-166. doi: 10.3724/SP.J.1261.2015.00071

    CrossRef Google Scholar

    [25] 殷坤龙, 韩再生, 李志中. 国际滑坡研究的新进展[J]. 水文地质工程地质, 2000, 27(5):1-4 doi: 10.3969/j.issn.1000-3665.2000.05.001

    CrossRef Google Scholar

    YIN Kunlong, HAN Zaisheng, LI Zhizhong. Progress of landslide researches in the world [J]. Hydrogeology and Engineering Geology, 2000, 27(5): 1-4. doi: 10.3969/j.issn.1000-3665.2000.05.001

    CrossRef Google Scholar

    [26] 贾永刚, 王振豪, 刘晓磊, 等. 海底滑坡现场调查及原位观测方法研究进展[J]. 中国海洋大学学报, 2017, 47(10):61-72

    Google Scholar

    JIA Yonggang, WANG Zhenhao, LIU Xiaolei, et al. The research progress of field investigation and in-situ observation methods for submarine landslide [J]. Periodical of Ocean University of China, 2017, 47(10): 61-72.

    Google Scholar

    [27] De Blasio F V, Elverhøi A, Issler D, et al. On the dynamics of subaqueous clay rich gravity mass flows—the giant Storegga slide, Norway [J]. Marine and Petroleum Geology, 2005, 22(1-2): 179-186. doi: 10.1016/j.marpetgeo.2004.10.014

    CrossRef Google Scholar

    [28] 周庆杰. 南海北部陆坡白云凹陷区海底滑坡的识别与特征分析[D]. 国家海洋局第一海洋研究所硕士学位论文, 2015

    Google Scholar

    ZHOU Qingjie. Identification of submarine landslides and characteristics analysis in the Baiyun Sag of the South China Sea Northern solpe[D]. Master Dissertation of the First Institute of Oceanography, State Oceanic Administration, 2015.

    Google Scholar

    [29] McAdoo B G, Pratson L F, Orange D L. Submarine landslide geomorphology, US continental slope [J]. Marine Geology, 2000, 169(1-2): 103-136. doi: 10.1016/S0025-3227(00)00050-5

    CrossRef Google Scholar

    [30] 胡光海. 东海陆坡海底滑坡识别及致滑因素影响研究[D]. 中国海洋大学博士学位论文, 2010

    Google Scholar

    HU Guanghai. Identification of submarine landslides along the continental slope of the East China Sea and analysis of factors causing submarine landslides[D]. Doctor Dissertation of Ocean University of China, 2010.

    Google Scholar

    [31] 王磊, 吴时国, 李伟. 人机交互地貌解释技术在海底滑坡研究中的应用[J]. 地球物理学进展, 2013, 28(6):3299-3306 doi: 10.6038/pg20130659

    CrossRef Google Scholar

    WANG Lei, WU Shiguo, LI Wei. The application for interactive geomorphologic interpretation technique in research on submarine landslides [J]. Progress in Geophysics, 2013, 28(6): 3299-3306. doi: 10.6038/pg20130659

    CrossRef Google Scholar

    [32] Harders R, Ranero C R, Weinrebe W, et al. Submarine slope failures along the convergent continental margin of the Middle America Trench [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): Q05S32.

    Google Scholar

    [33] Chen D X, Wang X J, Völker D, et al. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea [J]. Marine and Petroleum Geology, 2016, 77: 1125-1139. doi: 10.1016/j.marpetgeo.2016.08.012

    CrossRef Google Scholar

    [34] 蓝先洪, 温珍河, 李日辉, 等. 海底地质取样的技术标准[J]. 海洋地质前沿, 2014, 30(2):50-55

    Google Scholar

    LAN Xianhong, WEN Zhenhe, LI Rihui, et al. Study on thchnological standard for submarine geological sampling [J]. Marine Geology Frontiers, 2014, 30(2): 50-55.

    Google Scholar

    [35] 杨慧良, 陆凯, 褚宏宪. 海洋地质地球物理调查技术方法发展趋势探讨[J]. 海洋地质前沿, 2019, 35(9):1-5

    Google Scholar

    YANG Huiliang, LU Kai, CHU Hongxian. Future development trend of marine geological and geophysical survey techniques and methods [J]. Marine Geology Frontiers, 2019, 35(9): 1-5.

    Google Scholar

    [36] 朱俊江, 李三忠, 陆敬安, 等. 南海北部神狐海域地质环境综合调查及科学意义[J]. 地球科学, 2020, 45(4):1416-1426

    Google Scholar

    ZHU Junjiang, LI Sanzhong, LU Jing’an, et al. Scientific implications and preliminary surveying results of geological and physical oceanography environment in the Shenhu area of the Northern South China Sea [J]. Earth Science, 2020, 45(4): 1416-1426.

    Google Scholar

    [37] 耿雪樵, 徐行, 刘方兰, 等. 我国海底取样设备的现状与发展趋势[J]. 地质装备, 2009, 10(4):11-16 doi: 10.3969/j.issn.1009-282X.2009.04.002

    CrossRef Google Scholar

    GENG Xueqiao, XU Xing, LIU Fanglan, et al. The current status and development trends of marine sampling equipment [J]. Equipment for Geotechnical Engineering, 2009, 10(4): 11-16. doi: 10.3969/j.issn.1009-282X.2009.04.002

    CrossRef Google Scholar

    [38] Yenes M, Monterrubio S, Nespereira J, et al. Apparent overconsolidation and its implications for submarine landslides [J]. Engineering Geology, 2020, 264: 105375. doi: 10.1016/j.enggeo.2019.105375

    CrossRef Google Scholar

    [39] Richards A F, Øten K, Keller G H, et al. Differential piezometer probe for an in situ measurement of sea-floor [J]. Géotechnique, 1975, 25(2): 229-238.

    Google Scholar

    [40] Bennett R H. Pore-water pressure measurements: Mississippi delta submarine sediments [J]. Marine Geotechnology, 1977, 2(1-4): 177-189. doi: 10.1080/10641197709379778

    CrossRef Google Scholar

    [41] Sultan N, Cattaneo A, Sibuet J C, et al. Deep sea in situ excess pore pressure and sediment deformation off NW Sumatra and its relation with the December 26, 2004 Great Sumatra-Andaman Earthquake [J]. International Journal of Earth Sciences, 2009, 98(4): 823-837. doi: 10.1007/s00531-008-0334-z

    CrossRef Google Scholar

    [42] Sultan N, Marsset B, Ker S, et al. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B8): B08101.

    Google Scholar

    [43] Fabian M, Villinger H. Long-term tilt and acceleration data from the Logatchev Hydrothermal Vent Field, Mid-Atlantic Ridge, measured by the Bremen Ocean Bottom Tiltmeter [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07016.

    Google Scholar

    [44] Yokoyama T, Shimoyama M, Matsuda S, et al. Monitoring system for seafloor deformation during methane hydrate production test[C]//Proceedings of the Tenth ISOPE Ocean Mining and Gas Hydrates Symposium. Szczecin, Poland: International Society of Offshore and Polar Engineers, 2013: 132-135.

    Google Scholar

    [45] Stenvold T, Eiken O, Zumberge M, et al. High-precision relative depth and subsidence mapping from seafloor water-pressure measurements [J]. SPE Journal, 2006, 11(3): 380-389. doi: 10.2118/97752-PA

    CrossRef Google Scholar

    [46] Wallace L M, Webb S C, Ito Y, et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand [J]. Science, 2016, 352(6286): 701-704. doi: 10.1126/science.aaf2349

    CrossRef Google Scholar

    [47] 贾永刚, 王振豪, 刘晓磊, 等. 海床侧向变形与滑动观测装置及方法: 中国, 201510717982.0[P]. 2016-02-03

    Google Scholar

    JIA Yonggang, WANG Zhenhao, LIU Xiaolei, et al. Seabed deformation observation device and method: CN, 201510717982.0[P]. 2016-02-03.

    Google Scholar

    [48] 邓检良, 张向霞. 基于旋转水槽试验的水下泥石流底部水压研究[J]. 工程地质学报, 2020, 28(5):1000-1006

    Google Scholar

    DENG Jianliang, ZHANG Xiangxia. Study on water pressure at bottom of subaqueous debris flow in rotating flume test [J]. Journal of Engineering Geology, 2020, 28(5): 1000-1006.

    Google Scholar

    [49] Wang F W, Dai Z L, Nakahara Y, et al. Experimental study on impact behavior of submarine landslides on undersea communication cables [J]. Ocean Engineering, 2018, 148: 530-537. doi: 10.1016/j.oceaneng.2017.11.050

    CrossRef Google Scholar

    [50] Liu T, Lu Y Y, Zhou L, et al. Experiment and analysis of submarine landslide model caused by elevated pore pressure [J]. Journal of Marine Science and Engineering, 2019, 7(5): 146. doi: 10.3390/jmse7050146

    CrossRef Google Scholar

    [51] Fan N, Nian T K, Jiao H B, et al. Evaluation of the mass transfer flux at interfaces between submarine sliding soils and ambient water [J]. Ocean Engineering, 2020, 216: 108069. doi: 10.1016/j.oceaneng.2020.108069

    CrossRef Google Scholar

    [52] Gue C S. Submarine landslide flows simulation through centrifuge modelling[D]. Doctor Dissertation of University of Cambridge, 2012.

    Google Scholar

    [53] 孙柏涛. 海底滑坡的离心模型试验研究[D]. 大连理工大学硕士学位论文, 2014

    Google Scholar

    SUN Baitao. Centrifuge modeling test on submarine landslides[D]. Master Dissertation of Dalian University of Technology, 2014.

    Google Scholar

    [54] 霍沿东, 年廷凯, 焦厚滨, 等. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 2019, 27(2):408-414

    Google Scholar

    HUO Yandong, NIAN Tingkai, JIAO Houbin, et al. Seismic stability of submarine clay slopes based on upper bound approach [J]. Journal of Engineering Geology, 2019, 27(2): 408-414.

    Google Scholar

    [55] 施家杰, 张巍, 厉成阳, 等. 水合物分解诱发能源土滑坡的物质点法模拟[J]. 工程地质学报, 2019, 27(5):1164-1171

    Google Scholar

    SHI Jiajie, ZHANG Wei, LI Chengyang, et al. Simulation of energy soil landslide induced by hydrate dissociation using material point method [J]. Journal of Engineering Geology, 2019, 27(5): 1164-1171.

    Google Scholar

    [56] 朱晨光, 刘春, 许强, 等. 滑坡滑带摩擦热离散元数值模拟研究[J]. 工程地质学报, 2019, 27(3):651-658

    Google Scholar

    ZHU Chenguang, LIU Chun, XU Qiang, et al. Discrete element numerical simulation research on friction heat in sliding zone of the landslide [J]. Journal of Engineering Geology, 2019, 27(3): 651-658.

    Google Scholar

    [57] 马林伟, 吴时国. 海底滑坡过程的分段模拟研究[C]//第十五届国家安全地球物理专题研讨会论文集. 张掖, 2019: 57-61

    Google Scholar

    MA Linwei, WU Shiguo. Subsection simulation of submarine landslide process[C]// Proceedings of the 15th National Security Geophysics Symposium. Zhangye, 2019: 57-61.

    Google Scholar

    [58] Mi Y, Wang J H. Finite-element modeling of submarine landslide triggered by seismic loading in saturated cohesive soil deposits [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 951-965. doi: 10.1007/s10064-020-02005-4

    CrossRef Google Scholar

    [59] Locat J, Lee H J. Submarine landslides: advances and challenges [J]. Canadian Geotechnical Journal, 2002, 39(1): 193-212. doi: 10.1139/t01-089

    CrossRef Google Scholar

    [60] Hance J J. Development of a database and assessment of seafloor slope stability based on published literature[D]. Master Dissertation of the University of Texas at Austin, 2003.

    Google Scholar

    [61] Prior D B, Coleman J M. Active slides and flows in underconsolidated marine sediments on the slopes of the Mississippi Delta[M]//Saxov S, Nieuwenhuis J K. Marine Slides and Other Mass Movements. NATO Conference Series, vol. 6. Boston, MA: Springer, 1982: 21-49.

    Google Scholar

    [62] Cartwright J, Huuse M, Aplin A. Seal bypass systems [J]. AAPG Bulletin, 2007, 91(8): 1141-1166. doi: 10.1306/04090705181

    CrossRef Google Scholar

    [63] Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003

    CrossRef Google Scholar

    [64] 李伟. 南海北部海底滑坡的地震特征及成因分析[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2013

    Google Scholar

    LI Wei. Seismic characteristics and trigger mechanisms of submarine landslides in northern South China Sea[D]. Master Dissertation of the Institute of Oceanology, Chinese Academy of Science, 2013.

    Google Scholar

    [65] Fryer G J, Watts P, Pratson L F. Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc [J]. Marine Geology, 2004, 203(3-4): 201-218. doi: 10.1016/S0025-3227(03)00305-0

    CrossRef Google Scholar

    [66] Ide S, Baltay A, Beroza G C. Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake [J]. Science, 2011, 332(6036): 1426-1429. doi: 10.1126/science.1207020

    CrossRef Google Scholar

    [67] Fujiwara T, Kodaira S, No T, et al. The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis [J]. Science, 2011, 334(6060): 1240. doi: 10.1126/science.1211554

    CrossRef Google Scholar

    [68] Nian T K, Guo X S, Zheng D F, et al. Susceptibility assessment of regional submarine landslides triggered by seismic actions [J]. Applied Ocean Research, 2019, 93: 101964. doi: 10.1016/j.apor.2019.101964

    CrossRef Google Scholar

    [69] Chigira M, Yagi H. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan [J]. Engineering Geology, 2006, 82(4): 202-221. doi: 10.1016/j.enggeo.2005.10.006

    CrossRef Google Scholar

    [70] Ripmeester J A, Tse J S, Ratcliffe C I, et al. A new clathrate hydrate structure [J]. Nature, 1987, 325(6100): 135-136. doi: 10.1038/325135a0

    CrossRef Google Scholar

    [71] Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges [J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    CrossRef Google Scholar

    [72] Xu W Y, Germanovich L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach [J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B1): B01104.

    Google Scholar

    [73] Max M D, Clifford S M. The state, potential distribution, and biological implications of methane in the Martian crust [J]. Journal of Geophysical Research:Planets, 2000, 105(E2): 4165-4171. doi: 10.1029/1999JE001119

    CrossRef Google Scholar

    [74] Handwerger A L, Rempel A W, Skarbek R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429-2445. doi: 10.1002/2016GC006706

    CrossRef Google Scholar

    [75] Li X P, He S M. Progress in stability analysis of submarine slopes considering dissociation of gas hydrates [J]. Environmental Earth Sciences, 2012, 66(3): 741-747. doi: 10.1007/s12665-011-1282-7

    CrossRef Google Scholar

    [76] Elger J, Berndt C, Rüpke L, et al. Submarine slope failures due to pipe structure formation [J]. Nature Communications, 2018, 9(1): 715. doi: 10.1038/s41467-018-03176-1

    CrossRef Google Scholar

    [77] Nian T K, Song X L, Zhao W, et al. Submarine slope failure due to overpressure fluid associated with gas hydrate dissociation [J]. Environmental Geotechnics, 2020: 1-16.(. doi: 10.1680/jenge.19.00070

    CrossRef Google Scholar

    [78] Bouriak S, Vanneste M, Saoutkine A. Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Vøring Plateau, offshore Norway [J]. Marine Geology, 2000, 163(1-4): 125-148. doi: 10.1016/S0025-3227(99)00115-2

    CrossRef Google Scholar

    [79] Glasby G P. Potential impact on climate of the exploitation of methane hydrate deposits offshore [J]. Marine and Petroleum Geology, 2003, 20(2): 163-175. doi: 10.1016/S0264-8172(03)00021-7

    CrossRef Google Scholar

    [80] Bondevik S, Løvholt F, Harbitz C, et al. The Storegga Slide tsunami—comparing field observations with numerical simulations [J]. Marine and Petroleum Geology, 2005, 22(1-2): 195-208. doi: 10.1016/j.marpetgeo.2004.10.003

    CrossRef Google Scholar

    [81] 冯文科, 石要红, 陈玲辉. 南海北部外陆架和上陆坡海底滑坡稳定性研究[J]. 海洋地质与第四纪地质, 1994, 14(2):81-94

    Google Scholar

    FENG Wenke, SHI Yaohong, CHEN Linghui. Research for seafloor landslide stability on the outer continental shelf and the upper continental slope in the northern South China Sea [J]. Marine Geology & Quaternary Geology, 1994, 14(2): 81-94.

    Google Scholar

    [82] 孙运宝, 吴时国, 王志君, 等. 南海北部白云大型海底滑坡的几何形态与变形特征[J]. 海洋地质与第四纪地质, 2008, 28(6):69-77

    Google Scholar

    SUN Yunbao, WU Shiguo, WANG Zhijun, et al. The geometry and deformation characteristics of Baiyun submarine landslide [J]. Marine Geology & Quaternary Geology, 2008, 28(6): 69-77.

    Google Scholar

    [83] 吴时国, 秦志亮, 王大伟, 等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报, 2011, 54(12):3184-3195 doi: 10.3969/j.issn.0001-5733.2011.12.018

    CrossRef Google Scholar

    WU Shiguo, QIN Zhiliang, WANG Dawei, et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3184-3195. doi: 10.3969/j.issn.0001-5733.2011.12.018

    CrossRef Google Scholar

    [84] 王磊, 吴时国, 李清平, 等. 珠江口盆地陆架坡折带海底滑坡及其影响因素[J]. 海洋科学, 2016, 40(5):131-141 doi: 10.11759/hykx20140115002

    CrossRef Google Scholar

    WANG Lei, WU Shiguo, LI Qingping, et al. Submarine slides and influencing factors in the continental shelf break area of the Pearl River Mouth Basin [J]. Marine Sciences, 2016, 40(5): 131-141. doi: 10.11759/hykx20140115002

    CrossRef Google Scholar

    [85] Zhu C Q, Cheng S, Li Q P, et al. Giant submarine landslide in the South China Sea: Evidence, causes, and implications [J]. Journal of Marine Science and Engineering, 2019, 7(5): 152. doi: 10.3390/jmse7050152

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(1)

Article Metrics

Article views(3818) PDF downloads(40) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint