2022 Vol. 42, No. 3
Article Contents

ZHANG Hanyu, CHEN Jiaojiao, CHEN Yunping, LIU Huaishan. Internal friction resistance of saturated rocks under cyclic loading[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 194-203. doi: 10.16562/j.cnki.0256-1492.2021062101
Citation: ZHANG Hanyu, CHEN Jiaojiao, CHEN Yunping, LIU Huaishan. Internal friction resistance of saturated rocks under cyclic loading[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 194-203. doi: 10.16562/j.cnki.0256-1492.2021062101

Internal friction resistance of saturated rocks under cyclic loading

More Information
  • The stress-strain loop hysteretic nonlinear behavior of a rock is generally adopted in uniaxial cyclic loading experiments. Pore fluid, cyclic loading frequency, confining pressure and bedding direction are important external variables that cause stress and strain hysteresis, energy attenuation and rigidity change of rocks. In this paper, three comparative experiments have been carried out under the Material Testing System (MTS) for the stress-strain hysteresis with different saturated fluids, the rock energy attenuation by loading different frequency stress and saturated fluids, and Young’s modulus effect for the sandstones with different bedding directions sampled from Daqing, Nanjing, Hefei, etc. Based on the results, we clarified the nonlinear elastoplastic response characteristics of saturated rocks, and revealed the nonlinear deformation mechanism induced by external factors. And the mediating role of friction resistance on internal particle contact surfaces during rocks nonlinear elastic deformation process is proved. It is inferred that the sliding friction resistance of particles in macro-cracks may be the main internal factor resulted in the attenuation and hysteresis of rocks. This paper attempts to further reveal the dynamics process of earthquakes and rock instability based on the similarity of frictional sliding between the fine-scale rock particles and the earth-scale tectonic faults.

  • 加载中
  • [1] Mayergoyz I D. Mathematical Models of Hysteresis and Their Applications[M]. Amsterdam: Academic Press, 2003.

    Google Scholar

    [2] 李杰林, 洪流, 周科平, 等. 不同加卸载方式下饱和岩石力学特征的试验研究[J]. 矿冶工程, 2021, 41(2):15-19, 32 doi: 10.3969/j.issn.0253-6099.2021.02.004

    CrossRef Google Scholar

    LI Jielin, HONG Liu, ZHOU Keping, et al. Experimental study on mechanical characteristics of saturated rock under different cyclic loading modes [J]. Mining and Metallurgical Engineering, 2021, 41(2): 15-19, 32. doi: 10.3969/j.issn.0253-6099.2021.02.004

    CrossRef Google Scholar

    [3] 单俊芳, 徐松林, 张磊, 等. 岩石节理动摩擦过程中的声发射和产热特性研究[J]. 实验力学, 2020, 35(1):41-57

    Google Scholar

    SHAN Junfang, XU Songlin, ZHANG Lei, et al. Investigation on acoustic emission and heat production characteristics on joint surfaces due to dynamic friction [J]. Journal of Experimental Mechanics, 2020, 35(1): 41-57.

    Google Scholar

    [4] 徐松林, 章超, 黄俊宇, 等. 花岗岩压剪联合冲击特性与细观力学机制研究[J]. 岩石力学与工程学报, 2015, 34(10):1945-1958

    Google Scholar

    XU Songlin, ZHANG Chao, HUANG Junyu, et al. Dynamic and micromechanical behaviors of granite under combined compression and shear loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 1945-1958.

    Google Scholar

    [5] 张磊. 冲击载荷下节理面动摩擦特性研究[D]. 中国科学技术大学硕士学位论文, 2016.

    Google Scholar

    ZHANG Lei. Study on dynamic frictional properties of joint plane under impact load[D]. Master Dissertation of University of Science and Technology of China, 2016.

    Google Scholar

    [6] 徐婕, 翟世奎, 于增慧, 等. 大洋岩石圈板块俯冲构造背景下流体的地质作用[J]. 海洋学报, 2021, 43(1):27-43

    Google Scholar

    XU Jie, ZHAI Shikui, YU Zenghui, et al. Geological processes of fluids in the oceanic lithosphere subduction [J]. Haiyang Xuebao, 2021, 43(1): 27-43.

    Google Scholar

    [7] 金解放, 钟依禄, 余雄, 等. 岩石应力波分形分析方法的研究[J]. 有色金属科学与工程, 2021, 12(3):85-91

    Google Scholar

    JIN Jiefang, ZHONG Yilu, YU Xiong, et al. Study on the fractal analysis method of rock stress waves [J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 85-91.

    Google Scholar

    [8] Brace W F, Byerlee J D. Stick-slip as a mechanism for earthquakes [J]. Science, 1966, 153(3739): 990-992. doi: 10.1126/science.153.3739.990

    CrossRef Google Scholar

    [9] Mayergoyz I. Mathematical models of hysteresis [J]. IEEE Transactions on Magnetics, 1986, 22(5): 603-608. doi: 10.1109/TMAG.1986.1064347

    CrossRef Google Scholar

    [10] Guyer R A, Johnson P A. Nonlinear mesoscopic elasticity: evidence for a new class of materials [J]. Physics Today, 1999, 52(4): 30-36. doi: 10.1063/1.882648

    CrossRef Google Scholar

    [11] Gordon R B, Davis L A. Velocity and attenuation of seismic waves in imperfectly elastic rock [J]. Journal of Geophysical Research, 1968, 73(12): 3917-3935. doi: 10.1029/JB073i012p03917

    CrossRef Google Scholar

    [12] McKavanagh B, Stacey F D. Mechanical hysteresis in rocks at low strain amplitudes and seismic frequencies [J]. Physics of the Earth and Planetary Interiors, 1974, 8(3): 246-250. doi: 10.1016/0031-9201(74)90091-0

    CrossRef Google Scholar

    [13] Spencer J W. Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion [J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B3): 1803-1812. doi: 10.1029/JB086iB03p01803

    CrossRef Google Scholar

    [14] Day S M, Minster J B. Numerical simulation of attenuated wavefields using a Padé approximant method [J]. Geophysical Journal International, 1984, 78(1): 105-118. doi: 10.1111/j.1365-246X.1984.tb06474.x

    CrossRef Google Scholar

    [15] McCall K R, Guyer R A. Equation of state and wave propagation in hysteretic nonlinear elastic materials [J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B12): 23887-23897. doi: 10.1029/94JB01941

    CrossRef Google Scholar

    [16] Holcomb D J. Memory, relaxation, and microfracturing in dilatant rock [J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B7): 6235-6248. doi: 10.1029/JB086iB07p06235

    CrossRef Google Scholar

    [17] 陈运平, 刘干斌, 姚海林. 岩石滞后非线性弹性模拟的研究[J]. 岩土力学, 2006, 27(3):341-347 doi: 10.3969/j.issn.1000-7598.2006.03.001

    CrossRef Google Scholar

    CHEN Yunping, LIU Ganbin, YAO Hailin. Study on simulation for hysteretic nonlinear elasticity of rock [J]. Rock and Soil Mechanics, 2006, 27(3): 341-347. doi: 10.3969/j.issn.1000-7598.2006.03.001

    CrossRef Google Scholar

    [18] Messerschmidt U. Dislocation Dynamics during Plastic Deformation[M]. Berlin, Heidelberg: Springer, 2010.

    Google Scholar

    [19] 尤明庆. 岩石试样的杨氏模量与围压的关系[J]. 岩石力学与工程学报, 2003, 22(1):53-60 doi: 10.3321/j.issn:1000-6915.2003.01.010

    CrossRef Google Scholar

    YOU Mingqing. Effect of confining pressure on the Young’s modulus of rock specimen [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 53-60. doi: 10.3321/j.issn:1000-6915.2003.01.010

    CrossRef Google Scholar

    [20] 席道瑛, 刘小燕, 张程远. 由宏观滞回曲线分析岩石的微细观损伤[J]. 岩石力学与工程学报, 2003, 22(2):182-187 doi: 10.3321/j.issn:1000-6915.2003.02.003

    CrossRef Google Scholar

    XI Daoying, LIU Xiaoyan, ZHANG Chengyuan. Analysis on Micro and Meso-damage of rock by Macro-hysteresis curve [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 182-187. doi: 10.3321/j.issn:1000-6915.2003.02.003

    CrossRef Google Scholar

    [21] 席道瑛, 徐松林. 岩石物理学基础[M]. 合肥: 中国科学技术大学出版社, 2012.

    Google Scholar

    XI Daoying, XU Songlin. Foundations of Rock Physics[M]. Hefei: University of Science and Technology of China Press, 2012.

    Google Scholar

    [22] 陈颙, 黄庭芳. 岩石物理学[M]. 北京: 北京大学出版社, 2001.

    Google Scholar

    CHEN Yong, HUANG Tingfang. Rock Physics[M]. Beijing: Peking University Press, 2001.

    Google Scholar

    [23] Tullis T E, Weeks J D. Constitutive behavior and stability of frictional sliding of granite [J]. Pure and Applied Geophysics, 1986, 124(3): 383-414. doi: 10.1007/BF00877209

    CrossRef Google Scholar

    [24] Delsanto P P, Scalerandi M. Modeling nonclassical nonlinearity, conditioning, and slow dynamics effects in mesoscopic elastic materials [J]. Physical Review B, 2003, 68(6): 064107. doi: 10.1103/PhysRevB.68.064107

    CrossRef Google Scholar

    [25] Thompson P A, Robbins M O. Origin of stick-slip motion in boundary lubrication [J]. Science, 1990, 250(4982): 792-794. doi: 10.1126/science.250.4982.792

    CrossRef Google Scholar

    [26] Van Den Abeele K E A, Carmeliet J, Johnson P A, et al. Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B6): ECV 4-1-ECV 4-11.

    Google Scholar

    [27] 赖勇. 围压对杨氏模量的影响分析[J]. 重庆交通大学学报:自然科学版, 2009, 28(2):246-249, 278

    Google Scholar

    LAI Yong. Effect analysis of confining pressure on Young’s modulus [J]. Journal of Chongqing Jiaotong University:Natural Sciences, 2009, 28(2): 246-249, 278.

    Google Scholar

    [28] 陈运平, 王思敬. 多级循环荷载下饱和岩石的弹塑性响应[J]. 岩土力学, 2010, 31(4):1030-1034 doi: 10.3969/j.issn.1000-7598.2010.04.004

    CrossRef Google Scholar

    CHEN Yunping, WANG Sijing. Elastoplastic response of saturated rocks subjected to multilevel cyclic loading [J]. Rock and Soil Mechanics, 2010, 31(4): 1030-1034. doi: 10.3969/j.issn.1000-7598.2010.04.004

    CrossRef Google Scholar

    [29] Brennan B J, Stacey F D. Frequency dependence of elasticity of rock——Test of seismic velocity dispersion [J]. Nature, 1977, 268(5617): 220-222. doi: 10.1038/268220a0

    CrossRef Google Scholar

    [30] 席道瑛, 陈运平, 陶月赞, 等. 岩石的非线性弹性滞后特征[J]. 岩石力学与工程学报, 2006, 25(6):1086-1093 doi: 10.3321/j.issn:1000-6915.2006.06.002

    CrossRef Google Scholar

    XI Daoying, CHEN Yunping, TAO Yuezan, et al. Nonlinear elastic hysteric characteristics of rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1086-1093. doi: 10.3321/j.issn:1000-6915.2006.06.002

    CrossRef Google Scholar

    [31] Passchier C W, Trouw R A J. Microtectonics[M]. Berlin: Springer, 1996.

    Google Scholar

    [32] Stipp M, Stünitz H, Heilbronner R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C [J]. Journal of Structural Geology, 2002, 24(12): 1861-1884. doi: 10.1016/S0191-8141(02)00035-4

    CrossRef Google Scholar

    [33] Vernon R H. Review of microstructural evidence of magmatic and solid-state flow [J]. Visual Geosciences, 2000, 5(2): 1-23. doi: 10.1007/s10069-000-0002-3

    CrossRef Google Scholar

    [34] Poirier J P. Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals[M]. Cambridge: Cambridge University Press, 1985.

    Google Scholar

    [35] 陈运平, 席道瑛, 薛彦伟. 循环荷载下饱和岩石的滞后和衰减[J]. 地球物理学报, 2004, 47(4):672-679 doi: 10.3321/j.issn:0001-5733.2004.04.018

    CrossRef Google Scholar

    CHEN Yunping, XI Daoying, XUE Yanwei. Hysteresis and attenuation of saturated rocks under cyclic loading [J]. Chinese Journal of Geophysics, 2004, 47(4): 672-679. doi: 10.3321/j.issn:0001-5733.2004.04.018

    CrossRef Google Scholar

    [36] Raterron P, Chen J, Li L, et al. Pressure-induced slip-system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature [J]. American Mineralogist, 2007, 92(8-9): 1436-1445. doi: 10.2138/am.2007.2474

    CrossRef Google Scholar

    [37] 张磊, 王文帅, 苗春贺, 等. 花岗岩粗糙表面动摩擦形态演化[J]. 高压物理学报, 2021, 35(3):031201 doi: 10.11858/gywlxb.20200640

    CrossRef Google Scholar

    ZHANG Lei, WANG Wenshuai, MIAO Chunhe, et al. Rough surface morphology of granite subjected to dynamic friction [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640

    CrossRef Google Scholar

    [38] 汪泓, 杨天鸿, 刘洪磊, 等. 循环载荷下干燥及饱和砂岩的变形及声发射特征[J]. 东北大学学报:自然科学版, 2016, 37(8):1161-1165

    Google Scholar

    WANG Hong, YANG Tianhong, LIU Honglei, et al. Deformation and acoustic emission characteristics of dry and saturated sand under cyclic loading and unloading process [J]. Journal of Northeastern University:Natural Science, 2016, 37(8): 1161-1165.

    Google Scholar

    [39] 刘燕, 杨小彬, 汪洋, 等. 基于裂纹的岩石摩擦滑移位移演化实验研究[J]. 矿业科学学报, 2021, 6(4):438-444

    Google Scholar

    LIU Yan, YANG Xiaobin, WANG Yang, et al. Experimental study on the displacement evolution of rock interface friction slip based on crack [J]. Journal of Mining Science and Technology, 2021, 6(4): 438-444.

    Google Scholar

    [40] 王来贵, 赵国超, 刘向峰, 等. 滑动过程中砂岩节理摩擦系数演化规律研究[J]. 煤炭学报, 2021:1-10

    Google Scholar

    WANG Laigui, ZHAO Guochao, LIU Xiangfeng, et al. Analysis the Evolution of Friction Coefficient of Sandstone Joint during Sliding Process [J]. Journal of China Coal Society, 2021: 1-10.

    Google Scholar

    [41] Uchaikin V V. Fractional derivatives for physicists and engineers[M]. Berlin: Springer, 2013.

    Google Scholar

    [42] 席道瑛, 刘爱文, 刘卫. 低频条件下饱和流体砂岩的衰减研究[J]. 地震学报, 1995(04):477-481

    Google Scholar

    XI Daoying, LIU Aiwen, LIU Wei. Attenuation of saturated fluid sandstone at low frequency [J]. Acta Seismologica Sinica, 1995(04): 477-481.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(2005) PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint