Citation: | YE Shengbin, WANG Rujian, XIAO Wenshen, SUN Yechen, WU Li. Changing histories of glaciomarine deposition and water masses in the subarctic Okhotsk Sea of Late Quaternary[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 124-140. doi: 10.16562/j.cnki.0256-1492.2021031601 |
The subarctic Okhotsk Sea is one of the most important carbon sinks in the world and the main source areas of North Pacific Intermediate Water (NPIW). The study of Late Quaternary paleoenvironmental changes of the Okhotsk Sea and their effect factors are of great significance for understanding the responses of subpolar oceans to global climate change. Coarse fraction, drop stone, foraminiferal abundance, CaCO3 content, benthic foraminifera Uvigerina spp. oxygen and carbon isotopes in the core ARC2-T00 collected from the Academy of Sciences on Rise of Southern Okhotsk Sea are tested, counted or analyzed by the authors and then the stratigraphic chronology of the core is established based on the comparison of the benthic foraminifera Uvigerina spp.-δ18O, the global deep-sea oxygen isotope stacks LR04-δ18O and the adjacent site OS03-1 Uvigerina spp.-δ18O. The results indicate that, in the most intervals of MIS 6—2, the sedimentary dynamic mechanisms in the Southern Okhotsk Sea are dominated by westerlies, ocean currents and sea ice. Changes in the accumulation rate of eolian dust indicate that the westerlies strengthened and weakened during the glacials and the interglacials, respectively. The variation in the accumulation rate of sea ice sediments illustrates that during the glacials, sea ice deposition was severely influenced by the location of the seasonal sea ice depositional center at that time. Meanwhile, as indicated by proxies of sea ice and water masses, the southern Okhotsk Sea was covered by seasonal sea ice and the upper Okhotsk Sea Intermediate Water (uOSIW) production was strengthened. Salinity variation in lower Okhotsk Sea Intermediate Water (lOSIW) may be related to inflow of the Forerunner of Soya Warm Current Water (FSCW), brine rejection due to sea ice formation and intrusion of the Pacific Deep Water (PDW).
[1] | Ohkushi K, Hara N, Ikehara M, et al. Intensification of North Pacific intermediate water ventilation during the Younger Dryas [J]. Geo-Marine Letters, 2016, 36(5): 353-360. doi: 10.1007/s00367-016-0450-x |
[2] | 孙烨忱, 王汝建, 陈建芳, 等. 鄂霍次克海南部晚第四纪的古海洋学记录[J]. 海洋地质与第四纪地质, 2009, 29(2):83-90 SUN Yechen, WANG Rujian, CHEN Jianfang, et al. Late Quaternary Paleoceanographic records in the southern Okhotsk Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(2): 83-90. |
[3] | 石学法, 邹建军, 王昆山. 鄂霍次克海晚第四纪以来古环境演化[J]. 海洋地质与第四纪地质, 2011, 31(6):1-12 SHI Xuefa, ZOU Jianjun, WANG Kunshan. Paleoenvironmental changes in the Okhotsk Sea since late Pleistocene and its driving force [J]. Marine Geology & Quaternary Geology, 2011, 31(6): 1-12. |
[4] | Tsunogai S, Ono T, Watanabe S. Increase in total carbonate in the western North Pacific water and a hypothesis on the missing sink of anthropogenic carbon [J]. Journal of Oceanography, 1993, 49(3): 305-315. doi: 10.1007/BF02269568 |
[5] | Takahashi K. The Bering and Okhotsk Seas: modern and past paleoceanographic changes and gateway impact [J]. Journal of Asian Earth Sciences, 1998, 16(1): 49-58. doi: 10.1016/S0743-9547(97)00048-2 |
[6] | Takahashi Y, Matsumoto E, Watanabe Y W. The distribution of δ13C in total dissolved inorganic carbon in the central North Pacific Ocean along 175°E and implications for anthropogenic CO2 penetration [J]. Marine Chemistry, 2000, 69(3-4): 237-251. doi: 10.1016/S0304-4203(99)00108-5 |
[7] | Otsuki A S, Watanabe S, Tsunogai S. Absorption of atmospheric CO2 and its transport to the intermediate layer in the Okhotsk sea [J]. Journal of Oceanography, 2003, 59(5): 709-717. doi: 10.1023/B:JOCE.0000009599.94380.30 |
[8] | Kashiwase H, Ohshima K I, Nihashi S. Long-term variation in sea ice production and its relation to the intermediate water in the Sea of Okhotsk [J]. Progress in Oceanography, 2014, 126: 21-32. doi: 10.1016/j.pocean.2014.05.004 |
[9] | Gorbarenko S A, Chekhovskaya M P, Souhton J R. On the paleoenvironment of the central part of the Sea of Okhotsk during the past Holocene glaciation [J]. Oceanology, 1998, 38: 277-280. |
[10] | Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr [J]. Paleoceanography, 2004, 19(1): PA1016. |
[11] | Seki O, Yoshikawa C, Nakatsuka T, et al. Fluxes, source and transport of organic matter in the western Sea of Okhotsk: Stable carbon isotopic ratios of n-alkanes and total organic carbon [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(2): 253-270. doi: 10.1016/j.dsr.2005.11.004 |
[12] | Sakamoto T, Ikehara M, Uchida M, et al. Millennial-scale variations of sea-ice expansion in the southwestern part of the Okhotsk Sea during the past 120 kyr: Age model and ice-rafted debris in IMAGES Core MD01-2412 [J]. Global and Planetary Change, 2006, 53(1-2): 58-77. doi: 10.1016/j.gloplacha.2006.01.012 |
[13] | 吴永华, 石学法, 邹建军 等. 鄂霍次克海东南部180 ka BP以来底栖有孔虫δ13C轻值事件[J]. 科学通报, 2014, 59(24):3066-3074 doi: 10.1007/s11434-014-0222-9 WU Yonghua, SHI Xuefa, ZOU Jianjun, et al. Benthic foraminiferal δ13C minimum events in the southeastern Okhotsk Sea over the last 180 ka [J]. Chinese Science Bulletin, 2014, 59(24): 3066-3074. doi: 10.1007/s11434-014-0222-9 |
[14] | Bubenshchikova N, Nürnberg D, Tiedemann R. Variations of Okhotsk Sea oxygen minimum zone: comparison of foraminiferal and sedimentological records for latest MIS 12-11c and latest MIS 2-1 [J]. Marine Micropaleontology, 2015, 121: 52-69. doi: 10.1016/j.marmicro.2015.09.004 |
[15] | Zou J J, Shi X F, Zhu A M, et al. Evidence of sea ice-driven terrigenous detritus accumulation and deep ventilation changes in the southern Okhotsk Sea during the last 180ka [J]. Journal of Asian Earth Sciences, 2015, 114: 541-548. doi: 10.1016/j.jseaes.2015.07.020 |
[16] | Jimenez-Espejo F J, García-Alix A, Harada N, et al. Changes in detrital input, ventilation and productivity in the central Okhotsk Sea during the marine isotope stage 5e, penultimate interglacial period [J]. Journal of Asian Earth Sciences, 2018, 156: 189-200. doi: 10.1016/j.jseaes.2018.01.032 |
[17] | Lo L, Belt S T, Lattaud J, et al. Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130, 000 years ago [J]. Earth and Planetary Science Letters, 2018, 488: 36-45. doi: 10.1016/j.jpgl.2018.02.005 |
[18] | Sakamoto T, Ikehara M, Aoki K, et al. Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100kyrs in the Okhotsk Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16-18): 2275-2301. doi: 10.1016/j.dsr2.2005.08.007 |
[19] | Nürnberg D, Dethleff D, Tiedemann R, et al. Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350ka—Evidence from ice-rafted debris and planktonic δ18O [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(3-4): 191-205. doi: 10.1016/j.palaeo.2011.07.011 |
[20] | Nürnberg D, Tiedemann R. Environmental change in the Sea of Okhotsk during the last 1.1 million years [J]. Paleoceanography, 2004, 19(4): PA4011. |
[21] | Iwasaki S, Takahashi K, Maesawa T, et al. Paleoceanography of the last 500 kyrs in the central Okhotsk Sea based on geochemistry [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64: 50-62. doi: 10.1016/j.dsr2.2011.03.003 |
[22] | Seki O, Sakamoto T, Sakai S, et al. Large changes in seasonal sea ice distribution and productivity in the Sea of Okhotsk during the deglaciations [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10): Q10007. |
[23] | Gorbarenko S A, Khusid T A, Basov I A, et al. Glacial Holocene environment of the southeastern Okhotsk Sea: Evidence from geochemical and palaeontological data [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 177(3-4): 237-263. doi: 10.1016/S0031-0182(01)00335-2 |
[24] | 司贺园, 侯雪景, 丁旋, 等. 鄂霍次克海南部OS03-1岩心MIS6期以来的沉积记录及其古环境意义[J]. 现代地质, 2011, 25(3):482-488 SI Heyuan, HOU Xuejing, DING Xuan, et al. Sedimentary Record in Core OS03-1 from the Southern Okhotsk Sea since the Last Interglacial and the Paleoenvironmental Significance [J]. Geoscience, 2011, 25(3): 482-488. |
[25] | Cook M S, Ravelo A C, Mix A, et al. Tracing subarctic Pacific water masses with benthic foraminiferal stable isotopes during the LGM and late Pleistocene [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 125-126: 84-95. doi: 10.1016/j.dsr2.2016.02.006 |
[26] | Lattaud J, Lo L, Zeeden C, et al. A multiproxy study of past environmental changes in the Sea of Okhotsk during the last 1.5 Ma [J]. Organic Geochemistry, 2019, 132: 50-61. doi: 10.1016/j.orggeochem.2019.04.003 |
[27] | Locarnini R A, Mishonov A V, Baranova O K, et al. World ocean atlas 2018: volume 1: temperature[R]. Highway: NOAA, 2019. |
[28] | Zweng M M, Reagan J R, Seidov D, et al. World ocean atlas 2018: volume 2: salinity[R]. Highway: NOAA, 2019. |
[29] | Garcia H E, Weathers K W, Paver C R, et al. Dissolved oxygen, apparent oxygen utilization, and oxygen saturation[R]. Highway: NOAA, 2019. |
[30] | Schlitzer R. Data analysis and visualization with ocean data view [J]. CMOS Bulletin SCMO, 2015, 43(1): 9-13. |
[31] | Sancetta C. Oceanographic and ecologic significance of diatoms in surface sediments of the Bering and Okhotsk seas [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1981, 28(8): 789-817. doi: 10.1016/S0198-0149(81)80002-7 |
[32] | Lapko V V, Radchenko V I. Sea of okhotsk [J]. Marine Pollution Bulletin, 2000, 41(1-6): 179-187. doi: 10.1016/S0025-326X(00)00109-0 |
[33] | Talley L D. An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38 Suppl 1: S171-S190. |
[34] | Wong C S, Matear R J, Freeland H J, et al. WOCE line P1W in the Sea of Okhotsk: 2. CFCs and the formation rate of intermediate water [J]. Journal of Geophysical Research: Oceans, 1998, 103(C8): 15625-15642. doi: 10.1029/98JC01008 |
[35] | Itoh M, Ohshima K I, Wakatsuchi M. Distribution and formation of okhotsk sea intermediate water: an analysis of isopycnal climatological data [J]. Journal of Geophysical Research: Oceans, 2003, 108(C8): 3258. doi: 10.1029/2002JC001590 |
[36] | Keigwin L D, Gorbarenko S A. Sea level, surface salinity of the Japan Sea, and the Younger Dryas event in the northwestern Pacific Ocean [J]. Quaternary Research, 1992, 37(3): 346-360. doi: 10.1016/0033-5894(92)90072-Q |
[37] | Kitamura A, Takano O, Takata H, et al. Late Pliocene–early Pleistocene paleoceanographic evolution of the Sea of Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 172(1-2): 81-98. doi: 10.1016/S0031-0182(01)00272-3 |
[38] | Shcherbina A Y, Talley L D, Rudnick D L. Direct observations of north pacific ventilation: brine rejection in the Okhotsk sea [J]. Science, 2003, 302(5652): 1952-1955. doi: 10.1126/science.1088692 |
[39] | You Y Z, Suginohara N, Fukasawa M, et al. Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water [J]. Journal of Geophysical Research: Oceans, 2000, 105(C2): 3253-3280. doi: 10.1029/1999JC900304 |
[40] | Matul A G. The recent and quaternary distribution of the radiolarian species Cycladophora davisiana: a biostratigraphic and paleoceanographic tool [J]. Oceanology, 2011, 51(2): 335-346. doi: 10.1134/S0001437011020111 |
[41] | Nakatsuka T, Fujimune T, Yoshikawa C, et al. Biogenic and lithogenic particle fluxes in the western region of the Sea of Okhotsk: implications for lateral material transport and biological productivity [J]. Journal of Geophysical Research: Oceans, 2004, 109(C9): C09S13. |
[42] | Hays J D, Morley J J. The sea of Okhotsk: a window on the ice age ocean [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(4): 593-618. doi: 10.1016/j.dsr.2004.02.001 |
[43] | 张占海. 中国第二次北极科学考察报告[M]. 北京: 海洋出版社, 2004: 127. ZHANG Zhanhai. The Report of 2003 Chinese Arctic Research Expedition[M]. Beijing: China Ocean Press, 2004: 127. |
[44] | Serno S, Winckler G, Anderson R F, et al. Change in dust seasonality as the primary driver for orbital‐scale dust storm variability in East Asia [J]. Geophysical Research Letters, 2017, 44(8): 3796-3805. doi: 10.1002/2016GL072345 |
[45] | VAN Andel T H, Heath G R, Moore T C Jr. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data[M]//Van Andel T H, Heath G R, Moore T C Jr. Cenozoic History and Paleoceanography of the Central Equatorial Pacific Ocean. Tulsa, Okla: Geological Society of America, 1975, 143: 1-134. |
[46] | Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem [J]. Mathematical Geology, 1997, 29(4): 503-549. doi: 10.1007/BF02775085 |
[47] | Seidel M, Hlawitschka M. An R-based function for modeling of end member compositions [J]. Mathematical Geosciences, 2015, 47(8): 995-1007. doi: 10.1007/s11004-015-9609-7 |
[48] | Wu L, Wang R J, Xiao W S, et al. Late quaternary deep stratification‐climate coupling in the southern ocean: implications for changes in abyssal carbon storage [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2): 379-395. doi: 10.1002/2017GC007250 |
[49] | Stuut J B W, Prins M A, Schneider R R, et al. A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic [J]. Marine Geology, 2002, 180(1-4): 221-233. doi: 10.1016/S0025-3227(01)00215-8 |
[50] | Prins M A, Postma G, Weltje G J. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope [J]. Marine Geology, 2000, 169(3-4): 351-371. doi: 10.1016/S0025-3227(00)00087-6 |
[51] | Holz C, Stuut J B W, Henrich R. Terrigenous sedimentation processes along the continental margin off NW Africa: implications from grain‐size analysis of seabed sediments [J]. Sedimentology, 2004, 51(5): 1145-1154. doi: 10.1111/j.1365-3091.2004.00665.x |
[52] | 田军, 汪品先, 成鑫荣. 南海ODP1143站底栖有孔虫Cibicidoides与Uvigerina稳定氧碳同位素值的均衡试验[J]. 地球科学—中国地质大学学报, 2004, 29(1):1-6 TIAN Jun, WANG Pinxian, CHENG Xinrong. Stable isotope equilibrium test between benthic foraminifer Cibicidoides and Uvigerina at ODP site 1143, Southern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2004, 29(1): 1-6. |
[53] | Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial [J]. Colloques Internationaux, 1974, 219: 203-209. |
[54] | Coplen T B. Normalization of oxygen and hydrogen isotope data [J]. Chemical Geology: Isotope Geoscience Section, 1988, 72(4): 293-297. doi: 10.1016/0168-9622(88)90042-5 |
[55] | Folk R L, Ward W C. Brazos river bar: a study in the significance of grain size parameters [J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D |
[56] | Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003. doi: 10.1029/2004PA001071 |
[57] | Railsback L B, Gibbard P L, Head M J, et al. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages [J]. Quaternary Science Reviews, 2015, 111: 94-106. doi: 10.1016/j.quascirev.2015.01.012 |
[58] | Milliman J D, Xie Q C, Yang Z S. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean [J]. American Journal of Science, 1984, 284(7): 824-834. doi: 10.2475/ajs.284.7.824 |
[59] | Gorbarenko S A, Southon J R, Keigwin L D, et al. Late Pleistocene–Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological and paleontological evidence [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 209(1-4): 281-301. doi: 10.1016/j.palaeo.2004.02.013 |
[60] | Serno S, Winckler G, Anderson R F, et al. Eolian dust input to the Subarctic North Pacific [J]. Earth and Planetary Science Letters, 2014, 387: 252-263. doi: 10.1016/j.jpgl.2013.11.008 |
[61] | 王昆山, 石学法, 吴永华 等. 鄂霍次克海东南部OS03-1岩心重矿物分布特征及物质来源[J]. 海洋学报, 2014, 36(5):177-185 WANG Kunshan, SHI Xuefa, WU Yonghua, et al. Characteristics and provenance implications of heavy mineral in core OS03-1 from the east-southern Okhotsk Sea [J]. Acta Oceanologica Sinica, 2014, 36(5): 177-185. |
[62] | Wang R, Biskaborn B K, Ramisch A, et al. Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: implications and perspectives for palaeoenvironmental reconstructions [J]. Geo-Marine Letters, 2016, 36(4): 259-270. doi: 10.1007/s00367-016-0445-7 |
[63] | Rea D K, Hovan S A. Grain size distribution and depositional processes of the mineral component of abyssal sediments: Lessons from the North Pacific [J]. Paleoceanography, 1995, 10(2): 251-258. doi: 10.1029/94PA03355 |
[64] | Uchimoto K, Mitsudera H, Ebuchi N, et al. Anticyclonic eddy caused by the Soya Warm Current in an Okhotsk OGCM [J]. Journal of Oceanography, 2007, 63(3): 379-391. doi: 10.1007/s10872-007-0036-3 |
[65] | Nicholson U, Van Der Es B, Clift P D, et al. The sedimentary and tectonic evolution of the Amur River and North Sakhalin Basin: new evidence from seismic stratigraphy and Neogene–Recent sediment budgets [J]. Basin Research, 2016, 28(2): 273-297. doi: 10.1111/bre.12110 |
[66] | Fujisaki A, Mitsudera H, Wang J, et al. How does the Amur river discharge flow over the northwestern continental shelf in the Sea of Okhotsk? [J]. Progress in Oceanography, 2014, 126: 8-20. doi: 10.1016/j.pocean.2014.04.028 |
[67] | Murray J W, Alve E. Benthic foraminifera as indicators of environmental change: marginal-marine, shelf and upper slope environments[M]//Haslett S K. Quaternary Environmental Micropalaeontology. New York: Oxford University Press, 2002: 59-90. |
[68] | 黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2):163-170 doi: 10.3321/j.issn:1005-2321.2005.02.018 HUANG Yongjian, WANG Chengshan, WANG Yunliang. Progress in the study of proxies of paleocean productivity [J]. Earth Science Frontiers, 2005, 12(2): 163-170. doi: 10.3321/j.issn:1005-2321.2005.02.018 |
[69] | Abelmann A, Nimmergut A. Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16-18): 2302-2331. doi: 10.1016/j.dsr2.2005.07.009 |
[70] | Okazaki Y, Seki O, Nakatsuka T, et al. Cycladophora davisiana (Radiolaria) in the Okhotsk Sea: a key for reconstructing glacial ocean conditions [J]. Journal of Oceanography, 2006, 62(5): 639-648. doi: 10.1007/s10872-006-0082-2 |
[71] | Itaki T, Khim B K, Ikehara K. Last glacial–Holocene water structure in the southwestern Okhotsk Sea inferred from radiolarian assemblages [J]. Marine Micropaleontology, 2008, 67(3-4): 191-215. doi: 10.1016/j.marmicro.2008.01.002 |
[72] | Matul A G, Abelmann A, Gersonde R, et al. Late quaternary distribution of radiolarian Cycladophora davisiana as indication of possible ventilation of intermediate water in the subarctic pacific during the last glacial [J]. Oceanology, 2015, 55(1): 103-112. |
[73] | Wang R J, Xiao W S, März C, et al. Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean [J]. Global and Planetary Change, 2013, 108: 100-118. doi: 10.1016/j.gloplacha.2013.05.017 |
[74] | Bae S W, Lee K E, Park Y, et al. Sea surface temperature and salinity changes near the Soya Strait during the last 19 ka [J]. Quaternary International, 2014, 344: 200-210. doi: 10.1016/j.quaint.2014.06.014 |
[75] | Tanaka S, Takahashi K. Late quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16-18): 2131-2149. doi: 10.1016/j.dsr2.2005.07.002 |
[76] | Spratt R M, Lisiecki L E. A late Pleistocene sea level stack [J]. Climate of the Past, 2016, 12(4): 1079-1092. doi: 10.5194/cp-12-1079-2016 |
Location of Core ARC2-T00[2], OS03-1[24], LV28-41-4、LV28-42-4 & LV28-44-3[19], HS09 & HS13[25], MD01-2414[26],ocean currents[16], sea ice coverage[19]in Okhotsk Sea(a) and annual average temperature[27], salinity[28]and dissolved oxygen[29]of sea water of section 150°E and section 49.5°N of Okhotsk Sea(b)
Stratigraphic assignments of core ARC2-T00 in Okhotsk Sea, correlated with global benthic LR04-δ18O stacks[56]and core OS03-1 δ18O records[24](a),the depth-age model of ARC2-T00, based on 11 age control-points by correlation, and the sedimentation rate(b)
Benthic foraminifera Uvigerina spp.- δ18O & - δ13C curves and variations of biogenic fraction contents of Core ARC2-T00 in southern Okhotsk Sea
Coarse fraction contents, drop stone counts and grain size variations of Core ARC2-T00 in southern Okhotsk Sea
End member modeling analysis results of the grain size distribution from Core ARC2-T00 in southern Okhotsk Sea
Relative abundances of three end-members and grain size composition of Core ARC2-T00 in southern Okhotsk Sea
Comparison of AREMi of ARC2-T00、ARdust of ODP882[44]& global benthic LR04-δ18O stacks[56](a), Comparison of ARIRD of ARC2-T00、LV28-41-4、LV28-42-4 & LV28-44-3[19](b)、shift of seasonal sea ice deposition belt(c、d)
Changes of sea level[76],lOSIW salinity recovered from ARC2-T00,oxygen isotope of benthic foraminifera[56], C.davisiana and sea ice proxy EM3