2021 Vol. 41, No. 3
Article Contents

YE Shengbin, WANG Rujian, XIAO Wenshen, SUN Yechen, WU Li. Changing histories of glaciomarine deposition and water masses in the subarctic Okhotsk Sea of Late Quaternary[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 124-140. doi: 10.16562/j.cnki.0256-1492.2021031601
Citation: YE Shengbin, WANG Rujian, XIAO Wenshen, SUN Yechen, WU Li. Changing histories of glaciomarine deposition and water masses in the subarctic Okhotsk Sea of Late Quaternary[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 124-140. doi: 10.16562/j.cnki.0256-1492.2021031601

Changing histories of glaciomarine deposition and water masses in the subarctic Okhotsk Sea of Late Quaternary

More Information
  • The subarctic Okhotsk Sea is one of the most important carbon sinks in the world and the main source areas of ​​North Pacific Intermediate Water (NPIW). The study of Late Quaternary paleoenvironmental changes of the ​​Okhotsk Sea and their effect factors are of great significance for understanding the responses of subpolar oceans to global climate change. Coarse fraction, drop stone, foraminiferal abundance, CaCO3 content, benthic foraminifera Uvigerina spp. oxygen and carbon isotopes in the core ARC2-T00 collected from the Academy of Sciences on Rise of Southern Okhotsk Sea are tested, counted or analyzed by the authors and then the stratigraphic chronology of the core is established based on the comparison of the benthic foraminifera Uvigerina spp.-δ18O, the global deep-sea oxygen isotope stacks LR04-δ18O and the adjacent site OS03-1 Uvigerina spp.-δ18O. The results indicate that, in the most intervals of MIS 6—2, the sedimentary dynamic mechanisms in the Southern ​​Okhotsk Sea are dominated by westerlies, ocean currents and sea ice. Changes in the accumulation rate of eolian dust indicate that the westerlies strengthened and weakened during the glacials and the interglacials, respectively. The variation in the accumulation rate of sea ice sediments illustrates that during the glacials, sea ice deposition was severely influenced by the location of the seasonal sea ice depositional center at that time. Meanwhile, as indicated by proxies of sea ice and water masses, the southern ​​Okhotsk Sea was covered by seasonal sea ice and the upper Okhotsk Sea Intermediate Water (uOSIW) production was strengthened. Salinity variation in lower Okhotsk Sea Intermediate Water (lOSIW) may be related to inflow of the Forerunner of Soya Warm Current Water (FSCW), brine rejection due to sea ice formation and intrusion of the Pacific Deep Water (PDW).

  • 加载中
  • [1] Ohkushi K, Hara N, Ikehara M, et al. Intensification of North Pacific intermediate water ventilation during the Younger Dryas [J]. Geo-Marine Letters, 2016, 36(5): 353-360. doi: 10.1007/s00367-016-0450-x

    CrossRef Google Scholar

    [2] 孙烨忱, 王汝建, 陈建芳, 等. 鄂霍次克海南部晚第四纪的古海洋学记录[J]. 海洋地质与第四纪地质, 2009, 29(2):83-90

    Google Scholar

    SUN Yechen, WANG Rujian, CHEN Jianfang, et al. Late Quaternary Paleoceanographic records in the southern Okhotsk Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(2): 83-90.

    Google Scholar

    [3] 石学法, 邹建军, 王昆山. 鄂霍次克海晚第四纪以来古环境演化[J]. 海洋地质与第四纪地质, 2011, 31(6):1-12

    Google Scholar

    SHI Xuefa, ZOU Jianjun, WANG Kunshan. Paleoenvironmental changes in the Okhotsk Sea since late Pleistocene and its driving force [J]. Marine Geology & Quaternary Geology, 2011, 31(6): 1-12.

    Google Scholar

    [4] Tsunogai S, Ono T, Watanabe S. Increase in total carbonate in the western North Pacific water and a hypothesis on the missing sink of anthropogenic carbon [J]. Journal of Oceanography, 1993, 49(3): 305-315. doi: 10.1007/BF02269568

    CrossRef Google Scholar

    [5] Takahashi K. The Bering and Okhotsk Seas: modern and past paleoceanographic changes and gateway impact [J]. Journal of Asian Earth Sciences, 1998, 16(1): 49-58. doi: 10.1016/S0743-9547(97)00048-2

    CrossRef Google Scholar

    [6] Takahashi Y, Matsumoto E, Watanabe Y W. The distribution of δ13C in total dissolved inorganic carbon in the central North Pacific Ocean along 175°E and implications for anthropogenic CO2 penetration [J]. Marine Chemistry, 2000, 69(3-4): 237-251. doi: 10.1016/S0304-4203(99)00108-5

    CrossRef Google Scholar

    [7] Otsuki A S, Watanabe S, Tsunogai S. Absorption of atmospheric CO2 and its transport to the intermediate layer in the Okhotsk sea [J]. Journal of Oceanography, 2003, 59(5): 709-717. doi: 10.1023/B:JOCE.0000009599.94380.30

    CrossRef Google Scholar

    [8] Kashiwase H, Ohshima K I, Nihashi S. Long-term variation in sea ice production and its relation to the intermediate water in the Sea of Okhotsk [J]. Progress in Oceanography, 2014, 126: 21-32. doi: 10.1016/j.pocean.2014.05.004

    CrossRef Google Scholar

    [9] Gorbarenko S A, Chekhovskaya M P, Souhton J R. On the paleoenvironment of the central part of the Sea of Okhotsk during the past Holocene glaciation [J]. Oceanology, 1998, 38: 277-280.

    Google Scholar

    [10] Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr [J]. Paleoceanography, 2004, 19(1): PA1016.

    Google Scholar

    [11] Seki O, Yoshikawa C, Nakatsuka T, et al. Fluxes, source and transport of organic matter in the western Sea of Okhotsk: Stable carbon isotopic ratios of n-alkanes and total organic carbon [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(2): 253-270. doi: 10.1016/j.dsr.2005.11.004

    CrossRef Google Scholar

    [12] Sakamoto T, Ikehara M, Uchida M, et al. Millennial-scale variations of sea-ice expansion in the southwestern part of the Okhotsk Sea during the past 120 kyr: Age model and ice-rafted debris in IMAGES Core MD01-2412 [J]. Global and Planetary Change, 2006, 53(1-2): 58-77. doi: 10.1016/j.gloplacha.2006.01.012

    CrossRef Google Scholar

    [13] 吴永华, 石学法, 邹建军 等. 鄂霍次克海东南部180 ka BP以来底栖有孔虫δ13C轻值事件[J]. 科学通报, 2014, 59(24):3066-3074 doi: 10.1007/s11434-014-0222-9

    CrossRef Google Scholar

    WU Yonghua, SHI Xuefa, ZOU Jianjun, et al. Benthic foraminiferal δ13C minimum events in the southeastern Okhotsk Sea over the last 180 ka [J]. Chinese Science Bulletin, 2014, 59(24): 3066-3074. doi: 10.1007/s11434-014-0222-9

    CrossRef Google Scholar

    [14] Bubenshchikova N, Nürnberg D, Tiedemann R. Variations of Okhotsk Sea oxygen minimum zone: comparison of foraminiferal and sedimentological records for latest MIS 12-11c and latest MIS 2-1 [J]. Marine Micropaleontology, 2015, 121: 52-69. doi: 10.1016/j.marmicro.2015.09.004

    CrossRef Google Scholar

    [15] Zou J J, Shi X F, Zhu A M, et al. Evidence of sea ice-driven terrigenous detritus accumulation and deep ventilation changes in the southern Okhotsk Sea during the last 180ka [J]. Journal of Asian Earth Sciences, 2015, 114: 541-548. doi: 10.1016/j.jseaes.2015.07.020

    CrossRef Google Scholar

    [16] Jimenez-Espejo F J, García-Alix A, Harada N, et al. Changes in detrital input, ventilation and productivity in the central Okhotsk Sea during the marine isotope stage 5e, penultimate interglacial period [J]. Journal of Asian Earth Sciences, 2018, 156: 189-200. doi: 10.1016/j.jseaes.2018.01.032

    CrossRef Google Scholar

    [17] Lo L, Belt S T, Lattaud J, et al. Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130, 000 years ago [J]. Earth and Planetary Science Letters, 2018, 488: 36-45. doi: 10.1016/j.jpgl.2018.02.005

    CrossRef Google Scholar

    [18] Sakamoto T, Ikehara M, Aoki K, et al. Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100kyrs in the Okhotsk Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16-18): 2275-2301. doi: 10.1016/j.dsr2.2005.08.007

    CrossRef Google Scholar

    [19] Nürnberg D, Dethleff D, Tiedemann R, et al. Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350ka—Evidence from ice-rafted debris and planktonic δ18O [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(3-4): 191-205. doi: 10.1016/j.palaeo.2011.07.011

    CrossRef Google Scholar

    [20] Nürnberg D, Tiedemann R. Environmental change in the Sea of Okhotsk during the last 1.1 million years [J]. Paleoceanography, 2004, 19(4): PA4011.

    Google Scholar

    [21] Iwasaki S, Takahashi K, Maesawa T, et al. Paleoceanography of the last 500 kyrs in the central Okhotsk Sea based on geochemistry [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64: 50-62. doi: 10.1016/j.dsr2.2011.03.003

    CrossRef Google Scholar

    [22] Seki O, Sakamoto T, Sakai S, et al. Large changes in seasonal sea ice distribution and productivity in the Sea of Okhotsk during the deglaciations [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10): Q10007.

    Google Scholar

    [23] Gorbarenko S A, Khusid T A, Basov I A, et al. Glacial Holocene environment of the southeastern Okhotsk Sea: Evidence from geochemical and palaeontological data [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 177(3-4): 237-263. doi: 10.1016/S0031-0182(01)00335-2

    CrossRef Google Scholar

    [24] 司贺园, 侯雪景, 丁旋, 等. 鄂霍次克海南部OS03-1岩心MIS6期以来的沉积记录及其古环境意义[J]. 现代地质, 2011, 25(3):482-488

    Google Scholar

    SI Heyuan, HOU Xuejing, DING Xuan, et al. Sedimentary Record in Core OS03-1 from the Southern Okhotsk Sea since the Last Interglacial and the Paleoenvironmental Significance [J]. Geoscience, 2011, 25(3): 482-488.

    Google Scholar

    [25] Cook M S, Ravelo A C, Mix A, et al. Tracing subarctic Pacific water masses with benthic foraminiferal stable isotopes during the LGM and late Pleistocene [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 125-126: 84-95. doi: 10.1016/j.dsr2.2016.02.006

    CrossRef Google Scholar

    [26] Lattaud J, Lo L, Zeeden C, et al. A multiproxy study of past environmental changes in the Sea of Okhotsk during the last 1.5 Ma [J]. Organic Geochemistry, 2019, 132: 50-61. doi: 10.1016/j.orggeochem.2019.04.003

    CrossRef Google Scholar

    [27] Locarnini R A, Mishonov A V, Baranova O K, et al. World ocean atlas 2018: volume 1: temperature[R]. Highway: NOAA, 2019.

    Google Scholar

    [28] Zweng M M, Reagan J R, Seidov D, et al. World ocean atlas 2018: volume 2: salinity[R]. Highway: NOAA, 2019.

    Google Scholar

    [29] Garcia H E, Weathers K W, Paver C R, et al. Dissolved oxygen, apparent oxygen utilization, and oxygen saturation[R]. Highway: NOAA, 2019.

    Google Scholar

    [30] Schlitzer R. Data analysis and visualization with ocean data view [J]. CMOS Bulletin SCMO, 2015, 43(1): 9-13.

    Google Scholar

    [31] Sancetta C. Oceanographic and ecologic significance of diatoms in surface sediments of the Bering and Okhotsk seas [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1981, 28(8): 789-817. doi: 10.1016/S0198-0149(81)80002-7

    CrossRef Google Scholar

    [32] Lapko V V, Radchenko V I. Sea of okhotsk [J]. Marine Pollution Bulletin, 2000, 41(1-6): 179-187. doi: 10.1016/S0025-326X(00)00109-0

    CrossRef Google Scholar

    [33] Talley L D. An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38 Suppl 1: S171-S190.

    Google Scholar

    [34] Wong C S, Matear R J, Freeland H J, et al. WOCE line P1W in the Sea of Okhotsk: 2. CFCs and the formation rate of intermediate water [J]. Journal of Geophysical Research: Oceans, 1998, 103(C8): 15625-15642. doi: 10.1029/98JC01008

    CrossRef Google Scholar

    [35] Itoh M, Ohshima K I, Wakatsuchi M. Distribution and formation of okhotsk sea intermediate water: an analysis of isopycnal climatological data [J]. Journal of Geophysical Research: Oceans, 2003, 108(C8): 3258. doi: 10.1029/2002JC001590

    CrossRef Google Scholar

    [36] Keigwin L D, Gorbarenko S A. Sea level, surface salinity of the Japan Sea, and the Younger Dryas event in the northwestern Pacific Ocean [J]. Quaternary Research, 1992, 37(3): 346-360. doi: 10.1016/0033-5894(92)90072-Q

    CrossRef Google Scholar

    [37] Kitamura A, Takano O, Takata H, et al. Late Pliocene–early Pleistocene paleoceanographic evolution of the Sea of Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 172(1-2): 81-98. doi: 10.1016/S0031-0182(01)00272-3

    CrossRef Google Scholar

    [38] Shcherbina A Y, Talley L D, Rudnick D L. Direct observations of north pacific ventilation: brine rejection in the Okhotsk sea [J]. Science, 2003, 302(5652): 1952-1955. doi: 10.1126/science.1088692

    CrossRef Google Scholar

    [39] You Y Z, Suginohara N, Fukasawa M, et al. Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water [J]. Journal of Geophysical Research: Oceans, 2000, 105(C2): 3253-3280. doi: 10.1029/1999JC900304

    CrossRef Google Scholar

    [40] Matul A G. The recent and quaternary distribution of the radiolarian species Cycladophora davisiana: a biostratigraphic and paleoceanographic tool [J]. Oceanology, 2011, 51(2): 335-346. doi: 10.1134/S0001437011020111

    CrossRef Google Scholar

    [41] Nakatsuka T, Fujimune T, Yoshikawa C, et al. Biogenic and lithogenic particle fluxes in the western region of the Sea of Okhotsk: implications for lateral material transport and biological productivity [J]. Journal of Geophysical Research: Oceans, 2004, 109(C9): C09S13.

    Google Scholar

    [42] Hays J D, Morley J J. The sea of Okhotsk: a window on the ice age ocean [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(4): 593-618. doi: 10.1016/j.dsr.2004.02.001

    CrossRef Google Scholar

    [43] 张占海. 中国第二次北极科学考察报告[M]. 北京: 海洋出版社, 2004: 127.

    Google Scholar

    ZHANG Zhanhai. The Report of 2003 Chinese Arctic Research Expedition[M]. Beijing: China Ocean Press, 2004: 127.

    Google Scholar

    [44] Serno S, Winckler G, Anderson R F, et al. Change in dust seasonality as the primary driver for orbital‐scale dust storm variability in East Asia [J]. Geophysical Research Letters, 2017, 44(8): 3796-3805. doi: 10.1002/2016GL072345

    CrossRef Google Scholar

    [45] VAN Andel T H, Heath G R, Moore T C Jr. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data[M]//Van Andel T H, Heath G R, Moore T C Jr. Cenozoic History and Paleoceanography of the Central Equatorial Pacific Ocean. Tulsa, Okla: Geological Society of America, 1975, 143: 1-134.

    Google Scholar

    [46] Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem [J]. Mathematical Geology, 1997, 29(4): 503-549. doi: 10.1007/BF02775085

    CrossRef Google Scholar

    [47] Seidel M, Hlawitschka M. An R-based function for modeling of end member compositions [J]. Mathematical Geosciences, 2015, 47(8): 995-1007. doi: 10.1007/s11004-015-9609-7

    CrossRef Google Scholar

    [48] Wu L, Wang R J, Xiao W S, et al. Late quaternary deep stratification‐climate coupling in the southern ocean: implications for changes in abyssal carbon storage [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2): 379-395. doi: 10.1002/2017GC007250

    CrossRef Google Scholar

    [49] Stuut J B W, Prins M A, Schneider R R, et al. A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic [J]. Marine Geology, 2002, 180(1-4): 221-233. doi: 10.1016/S0025-3227(01)00215-8

    CrossRef Google Scholar

    [50] Prins M A, Postma G, Weltje G J. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope [J]. Marine Geology, 2000, 169(3-4): 351-371. doi: 10.1016/S0025-3227(00)00087-6

    CrossRef Google Scholar

    [51] Holz C, Stuut J B W, Henrich R. Terrigenous sedimentation processes along the continental margin off NW Africa: implications from grain‐size analysis of seabed sediments [J]. Sedimentology, 2004, 51(5): 1145-1154. doi: 10.1111/j.1365-3091.2004.00665.x

    CrossRef Google Scholar

    [52] 田军, 汪品先, 成鑫荣. 南海ODP1143站底栖有孔虫CibicidoidesUvigerina稳定氧碳同位素值的均衡试验[J]. 地球科学—中国地质大学学报, 2004, 29(1):1-6

    Google Scholar

    TIAN Jun, WANG Pinxian, CHENG Xinrong. Stable isotope equilibrium test between benthic foraminifer Cibicidoides and Uvigerina at ODP site 1143, Southern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2004, 29(1): 1-6.

    Google Scholar

    [53] Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial [J]. Colloques Internationaux, 1974, 219: 203-209.

    Google Scholar

    [54] Coplen T B. Normalization of oxygen and hydrogen isotope data [J]. Chemical Geology: Isotope Geoscience Section, 1988, 72(4): 293-297. doi: 10.1016/0168-9622(88)90042-5

    CrossRef Google Scholar

    [55] Folk R L, Ward W C. Brazos river bar: a study in the significance of grain size parameters [J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    CrossRef Google Scholar

    [56] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003. doi: 10.1029/2004PA001071

    CrossRef Google Scholar

    [57] Railsback L B, Gibbard P L, Head M J, et al. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages [J]. Quaternary Science Reviews, 2015, 111: 94-106. doi: 10.1016/j.quascirev.2015.01.012

    CrossRef Google Scholar

    [58] Milliman J D, Xie Q C, Yang Z S. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean [J]. American Journal of Science, 1984, 284(7): 824-834. doi: 10.2475/ajs.284.7.824

    CrossRef Google Scholar

    [59] Gorbarenko S A, Southon J R, Keigwin L D, et al. Late Pleistocene–Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological and paleontological evidence [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 209(1-4): 281-301. doi: 10.1016/j.palaeo.2004.02.013

    CrossRef Google Scholar

    [60] Serno S, Winckler G, Anderson R F, et al. Eolian dust input to the Subarctic North Pacific [J]. Earth and Planetary Science Letters, 2014, 387: 252-263. doi: 10.1016/j.jpgl.2013.11.008

    CrossRef Google Scholar

    [61] 王昆山, 石学法, 吴永华 等. 鄂霍次克海东南部OS03-1岩心重矿物分布特征及物质来源[J]. 海洋学报, 2014, 36(5):177-185

    Google Scholar

    WANG Kunshan, SHI Xuefa, WU Yonghua, et al. Characteristics and provenance implications of heavy mineral in core OS03-1 from the east-southern Okhotsk Sea [J]. Acta Oceanologica Sinica, 2014, 36(5): 177-185.

    Google Scholar

    [62] Wang R, Biskaborn B K, Ramisch A, et al. Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: implications and perspectives for palaeoenvironmental reconstructions [J]. Geo-Marine Letters, 2016, 36(4): 259-270. doi: 10.1007/s00367-016-0445-7

    CrossRef Google Scholar

    [63] Rea D K, Hovan S A. Grain size distribution and depositional processes of the mineral component of abyssal sediments: Lessons from the North Pacific [J]. Paleoceanography, 1995, 10(2): 251-258. doi: 10.1029/94PA03355

    CrossRef Google Scholar

    [64] Uchimoto K, Mitsudera H, Ebuchi N, et al. Anticyclonic eddy caused by the Soya Warm Current in an Okhotsk OGCM [J]. Journal of Oceanography, 2007, 63(3): 379-391. doi: 10.1007/s10872-007-0036-3

    CrossRef Google Scholar

    [65] Nicholson U, Van Der Es B, Clift P D, et al. The sedimentary and tectonic evolution of the Amur River and North Sakhalin Basin: new evidence from seismic stratigraphy and Neogene–Recent sediment budgets [J]. Basin Research, 2016, 28(2): 273-297. doi: 10.1111/bre.12110

    CrossRef Google Scholar

    [66] Fujisaki A, Mitsudera H, Wang J, et al. How does the Amur river discharge flow over the northwestern continental shelf in the Sea of Okhotsk? [J]. Progress in Oceanography, 2014, 126: 8-20. doi: 10.1016/j.pocean.2014.04.028

    CrossRef Google Scholar

    [67] Murray J W, Alve E. Benthic foraminifera as indicators of environmental change: marginal-marine, shelf and upper slope environments[M]//Haslett S K. Quaternary Environmental Micropalaeontology. New York: Oxford University Press, 2002: 59-90.

    Google Scholar

    [68] 黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2):163-170 doi: 10.3321/j.issn:1005-2321.2005.02.018

    CrossRef Google Scholar

    HUANG Yongjian, WANG Chengshan, WANG Yunliang. Progress in the study of proxies of paleocean productivity [J]. Earth Science Frontiers, 2005, 12(2): 163-170. doi: 10.3321/j.issn:1005-2321.2005.02.018

    CrossRef Google Scholar

    [69] Abelmann A, Nimmergut A. Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16-18): 2302-2331. doi: 10.1016/j.dsr2.2005.07.009

    CrossRef Google Scholar

    [70] Okazaki Y, Seki O, Nakatsuka T, et al. Cycladophora davisiana (Radiolaria) in the Okhotsk Sea: a key for reconstructing glacial ocean conditions [J]. Journal of Oceanography, 2006, 62(5): 639-648. doi: 10.1007/s10872-006-0082-2

    CrossRef Google Scholar

    [71] Itaki T, Khim B K, Ikehara K. Last glacial–Holocene water structure in the southwestern Okhotsk Sea inferred from radiolarian assemblages [J]. Marine Micropaleontology, 2008, 67(3-4): 191-215. doi: 10.1016/j.marmicro.2008.01.002

    CrossRef Google Scholar

    [72] Matul A G, Abelmann A, Gersonde R, et al. Late quaternary distribution of radiolarian Cycladophora davisiana as indication of possible ventilation of intermediate water in the subarctic pacific during the last glacial [J]. Oceanology, 2015, 55(1): 103-112.

    Google Scholar

    [73] Wang R J, Xiao W S, März C, et al. Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean [J]. Global and Planetary Change, 2013, 108: 100-118. doi: 10.1016/j.gloplacha.2013.05.017

    CrossRef Google Scholar

    [74] Bae S W, Lee K E, Park Y, et al. Sea surface temperature and salinity changes near the Soya Strait during the last 19 ka [J]. Quaternary International, 2014, 344: 200-210. doi: 10.1016/j.quaint.2014.06.014

    CrossRef Google Scholar

    [75] Tanaka S, Takahashi K. Late quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16-18): 2131-2149. doi: 10.1016/j.dsr2.2005.07.002

    CrossRef Google Scholar

    [76] Spratt R M, Lisiecki L E. A late Pleistocene sea level stack [J]. Climate of the Past, 2016, 12(4): 1079-1092. doi: 10.5194/cp-12-1079-2016

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(1399) PDF downloads(131) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint