2021 Vol. 41, No. 5
Article Contents

CHEN Wei, ZHAO Yanyan, LI Sanzhong, TANG Zhineng, YANG Jun, WEI Haotian, WU Jiaqing, ZHU Junjiang, LIU Sheng, DONG Tao, ZHANG Guanglu, YANG Dandan, SUN Guojing. Sediment grain size characteristics of the Core SH-CL38 in the Shenhu area on the northern continental slope of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 90-100. doi: 10.16562/j.cnki.0256-1492.2021011001
Citation: CHEN Wei, ZHAO Yanyan, LI Sanzhong, TANG Zhineng, YANG Jun, WEI Haotian, WU Jiaqing, ZHU Junjiang, LIU Sheng, DONG Tao, ZHANG Guanglu, YANG Dandan, SUN Guojing. Sediment grain size characteristics of the Core SH-CL38 in the Shenhu area on the northern continental slope of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 90-100. doi: 10.16562/j.cnki.0256-1492.2021011001

Sediment grain size characteristics of the Core SH-CL38 in the Shenhu area on the northern continental slope of the South China Sea

More Information
  • A number of submarine canyons has been found in the Shenhu area on the northern continental slope of the South China Sea. Sediment sources, topographic features, hydrodynamic conditions, and depositional processes in these canyons are very complex, owing to the occurrence of submarine landslides and related turbidity currents. Landslides are found, by means of geophysical surveys, such as multi-beam bathymetric survey and high-resolution multi-channel seismic profiles, varying in scale from several to hundred meters. However, the high-resolution identification of the depositional systems, such as gravity flow, turbidity current, and hyperpycnal current on the shallow seafloor remains difficult. In this study, we analyzed the columnar sediments taken from the sampling station of SH-CL38 which is located in the lower reaches of the canyon on the northern slope of the South China Sea. According to the grain size distribution patterns of sediments and the oxygen isotope composition of foraminifera, the core sediments of SH-CL38 can be subdivided into the three units: Unit Ⅰ (0~285 cm), Unit Ⅱ (285~615 cm) and the Unit Ⅲ (615~800 cm). The physical and geochemical features of the Unit II, including grain size and the oxygen isotope composition of foraminifera are obviously different from those of the other two units. This suggests that the hydrodynamic conditions and depositional environment have been sharply changed while the Unit II was deposited. The grain size distribution patterns and the probability cumulative curves at 285~505 cm and 505~615 cm in depth are completely different and located in different areas of the C-M diagram. Based on the data mentioned above, it is concluded that the sediments of SH-CL38 is deposited in a deep-water environment under the influence of sea level change. The sediments of 285~505 cm is related to the turbidity current, while the 505~615 cm is formed in an instable environment under the influence of turbidity current or gravity flow.

  • 加载中
  • [1] 龚跃华, 张光学, 郭依群, 等. 南海北部神狐西南海域天然气水合物成矿远景[J]. 海洋地质与第四纪地质, 2013, 33(2):97-104

    Google Scholar

    GONG Yuehua, ZHANG Guangxue, GUO Yiqun, et al. Prospect of gas hydrate resources in the area to southwest Shen-Hu of northern South China Sea [J]. Marine Geology & Quaternary Geology, 2013, 33(2): 97-104.

    Google Scholar

    [2] 郭依群, 杨胜雄, 梁金强, 等. 南海北部神狐海域高饱和度天然气水合物分布特征[J]. 地学前缘, 2017, 24(4):24-31

    Google Scholar

    GUO Yiqun, YANG Shengxiong, LIANG Jinqiang, et al. Characteristics of high gas hydrate distribution in the Shenhu area on the northern slope of the South China Sea [J]. Earth Science Frontiers, 2017, 24(4): 24-31.

    Google Scholar

    [3] He Y, Zhong G F, Wang L L, et al. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea [J]. Marine and Petroleum Geology, 2014, 57: 546-560. doi: 10.1016/j.marpetgeo.2014.07.003

    CrossRef Google Scholar

    [4] 刘杰, 孙美静, 杨睿, 等. 泥底辟输导流体机制及其与天然气水合物成藏的关系[J]. 现代地质, 2016, 30(6):1399-1407 doi: 10.3969/j.issn.1000-8527.2016.06.022

    CrossRef Google Scholar

    LIU Jie, SUN Meijing, YANG Rui, et al. Diapir conduit fluid mechanism and its relationship with gas hydrate accumulations [J]. Geoscience, 2016, 30(6): 1399-1407. doi: 10.3969/j.issn.1000-8527.2016.06.022

    CrossRef Google Scholar

    [5] Zhu M Z, Graham S, Pang X, et al. Characteristics of migrating submarine canyons from the middle Miocene to present: implications for paleoceanographic circulation, northern South China Sea [J]. Marine and Petroleum Geology, 2010, 27(1): 307-319. doi: 10.1016/j.marpetgeo.2009.05.005

    CrossRef Google Scholar

    [6] 王珊珊, 王永波, 扶卿华, 等. 珠江口水体组分的吸收特性分析[J]. 环境科学, 2014, 35(12):4511-4521

    Google Scholar

    WANG Shanshan, WANG Yongbo, FU Qinghua, et al. Spectral absorption properties of the water constituents in the estuary of Zhujiang River [J]. Environmental Science, 2014, 35(12): 4511-4521.

    Google Scholar

    [7] 袁圣强, 吴时国, 赵宗举, 等. 南海北部陆坡深水区沉积物输送模式探讨[J]. 海洋地质与第四纪地质, 2010, 30(4):39-48

    Google Scholar

    YUAN Shengqiang, WU Shiguo, ZHAO Zongju, et al. Deepwater sediment transportation models for northern South China Sea slopes [J]. Marine Geology & Quaternary Geology, 2010, 30(4): 39-48.

    Google Scholar

    [8] Doeglas D J. Grain-size indices, classification and environment [J]. Sedimentology, 1968, 10(2): 83-100. doi: 10.1111/j.1365-3091.1968.tb01101.x

    CrossRef Google Scholar

    [9] Xie X N, Müller R D, Ren J Y, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea [J]. Marine Geology, 2008, 247(3-4): 129-144. doi: 10.1016/j.margeo.2007.08.005

    CrossRef Google Scholar

    [10] 许莎莎, 冯秀丽, 冯利, 等. 南海西北部莺琼陆坡36.6ka以来的浊流沉积[J]. 海洋地质与第四纪地质, 2020, 40(5):15-24

    Google Scholar

    XU Shasha, FENG Xiuli, FENG Li, et al. Turbidite records since 36.6ka at the Yingqiong continental slope in the northwest of South China Sea [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 15-24.

    Google Scholar

    [11] 章伟艳, 张富元, 张霄宇, 等. 南海东部海域柱样沉积物浊流沉积探讨[J]. 热带海洋学报, 2003, 22(3):36-43 doi: 10.3969/j.issn.1009-5470.2003.03.006

    CrossRef Google Scholar

    ZHANG Weiyan, ZHANG Fuyuan, ZHANG Xiaoyu, et al. Characteristics of turbidity deposits from sediment cores in eastern South China Sea [J]. Journal of Tropical Oceanography, 2003, 22(3): 36-43. doi: 10.3969/j.issn.1009-5470.2003.03.006

    CrossRef Google Scholar

    [12] Zhao Y L, Liu Z F, Colin C, et al. Turbidite deposition in the southern South China Sea during the last glacial: Evidence from grain-size and major elements records [J]. Chinese Science Bulletin, 2011, 56(33): 3558-3565. doi: 10.1007/s11434-011-4685-7

    CrossRef Google Scholar

    [13] 周杨锐, 朱友生, 周松望, 等. 南海北部东沙隆起西侧陆坡坡折处浊流沉积[J]. 海洋科学, 2018, 42(2):23-33 doi: 10.11759/hykx20171101003

    CrossRef Google Scholar

    ZHOU Yangrui, ZHU Yousheng, ZHOU Songwang, et al. Turbidites at the continental slope on the west side of Dongsha uplift in the northern South China Sea [J]. Marine Sciences, 2018, 42(2): 23-33. doi: 10.11759/hykx20171101003

    CrossRef Google Scholar

    [14] 邵磊, 李学杰, 耿建华, 等. 南海北部深水底流沉积作用[J]. 中国科学 D辑: 地球科学, 2007, 50(7):1060-1066 doi: 10.1007/s11430-007-0015-y

    CrossRef Google Scholar

    SHAO Lei, LI Xuejie, GENG Jianhua, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y

    CrossRef Google Scholar

    [15] 王一凡, 苏正, 苏明, 等. 南海北部陆坡神狐海域沉积物失稳类型探讨[J]. 海洋地质与第四纪地质, 2017, 37(5):184-194

    Google Scholar

    WANG Yifan, SU Zheng, SU Ming, et al. Sediment failures in the Shenhu area, northern continental slope of the south China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 184-194.

    Google Scholar

    [16] Chen D X, Wang X J, Völker D, et al. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea [J]. Marine and Petroleum Geology, 2016, 77: 1125-1139. doi: 10.1016/j.marpetgeo.2016.08.012

    CrossRef Google Scholar

    [17] Felix M. Flow structure of turbidity currents [J]. Sedimentology, 2002, 49(3): 397-419. doi: 10.1046/j.1365-3091.2002.00449.x

    CrossRef Google Scholar

    [18] Su M, Yang R, Wang H B, et al. Gas hydrates distribution in the Shenhu Area, northern South China Sea: comparisons between the eight drilling sites with gashydrate petroleum system [J]. Geologica Acta, 2016, 14(2): 79-100.

    Google Scholar

    [19] Chen H, Xie X N, Mao K N, et al. Depositional characteristics and formation mechanisms of deep-water canyon systems along the northern South China Sea margin [J]. Journal of Earth Science, 2020, 31(4): 808-819. doi: 10.1007/s12583-020-1284-z

    CrossRef Google Scholar

    [20] 陈芳, 周洋, 苏欣, 等. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J]. 海洋地质与第四纪地质, 2011, 31(5):95-100

    Google Scholar

    CHEN Fang, ZHOU Yang, SU Xin, et al. Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu area of northern South China Sea [J]. Marine Geology & Quaternary Geology, 2011, 31(5): 95-100.

    Google Scholar

    [21] 陈芳, 苏新, 周洋. 南海神狐海域水合物钻探区钙质超微化石生物地层与沉积速率[J]. 地球科学—中国地质大学学报, 2013, 38(1):1-9 doi: 10.3799/dqkx.2013.001

    CrossRef Google Scholar

    CHEN Fang, SU Xin, ZHOU Yang. Late miocene-pleistocene calcareous nannofossil biostratigraphy of Shenhu gas hydrate drilling area in the South China Sea and variations in sedimentation rates [J]. Earth Science—Journal of China University of Geosciences, 2013, 38(1): 1-9. doi: 10.3799/dqkx.2013.001

    CrossRef Google Scholar

    [22] 陈芳, 苏新, 周洋, 等. 南海北部陆坡神狐海域晚中新世以来沉积物中生物组分变化及意义[J]. 海洋地质与第四纪地质, 2009, 29(2):1-8

    Google Scholar

    CHEN Fang, SU Xin, ZHOU Yang, et al. Variations in biogenic components of late miocene-holocene sediments from Shenhu area in the northern South China Sea and their geological implication [J]. Marine Geology & Quaternary Geology, 2009, 29(2): 1-8.

    Google Scholar

    [23] 马俊明, 薛林福, 付少英, 等. 南海神狐海域地震-沉积相分析与沉积环境演化[J]. 世界地质, 2013, 32(2):359-365 doi: 10.3969/j.issn.1004-5589.2013.02.021

    CrossRef Google Scholar

    MA Junming, XUE Linfu, FU Shaoying, et al. Seismic-sedimentary facies analysis and evolution of sedimentary environment in Shenhu area, South China Sea [J]. Global Geology, 2013, 32(2): 359-365. doi: 10.3969/j.issn.1004-5589.2013.02.021

    CrossRef Google Scholar

    [24] Yu X H, Wang J Z, Liang J Q, et al. Depositional characteristics and accumulation model of gas hydrates in northern South China Sea [J]. Marine and Petroleum Geology, 2014, 56: 74-86. doi: 10.1016/j.marpetgeo.2014.03.011

    CrossRef Google Scholar

    [25] 刘杰, 苏明, 乔少华, 等. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨[J]. 沉积学报, 2016, 34(5):940-950

    Google Scholar

    LIU Jie, SU Ming, QIAO Shaohua, et al. Forming mechanism of the slope-confined submarine canyons in the Baiyun sag, pearl river mouth basin [J]. Acta Sedimentologica Sinica, 2016, 34(5): 940-950.

    Google Scholar

    [26] 孙启良, 解习农, 吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 2021, 28(2):258-270

    Google Scholar

    SUN Qiliang, XIE Xinong, WU Shiguo. Submarine landslides in the northern South China Sea: characteristics, geohazard evaluation and perspectives [J]. Earth Science Frontiers, 2021, 28(2): 258-270.

    Google Scholar

    [27] Li X S, Zhou Q J, Su T Y, et al. Slope-confined submarine canyons in the Baiyun deep-water area, northern South China sea: variation in their modern morphology [J]. Marine Geophysical Research, 2016, 37(2): 95-112. doi: 10.1007/s11001-016-9269-0

    CrossRef Google Scholar

    [28] 姜衡, 苏明, 邬黛黛, 等. 南海北部陆坡神狐海域GMGS01区块细粒浊积体的识别特征及意义[J]. 海洋地质与第四纪地质, 2017, 37(5):131-140

    Google Scholar

    JIANG Heng, SU Ming, WU Daidai, et al. Fine-grained turbidites in GMGS01 of the Shenhu area, northern south China sea and its significance [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 131-140.

    Google Scholar

    [29] 吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 2009, 27(5):922-930

    Google Scholar

    WU Shiguo, QIN Yunshan. The research of deepwater depositional system in the northern South China Sea [J]. Acta Sedimentologica Sinica, 2009, 27(5): 922-930.

    Google Scholar

    [30] Ding W W, Li J B, Li J, et al. Morphotectonics and evolutionary controls on the pearl river canyon system, South China Sea [J]. Marine Geophysical Research, 2013, 34(3): 221-238.

    Google Scholar

    [31] 吴嘉鹏, 王英民, 邱燕, 等. 南海北部神狐陆坡限制型滑塌体特征及成因机理[J]. 沉积学报, 2012, 30(4):639-645

    Google Scholar

    WU Jiapeng, WANG Yingmin, QIU Yan, et al. Characteristic and formation mechanism of the frontally confined landslide in Shenhu slope, northern South China Sea [J]. Acta Sedimentologica Sinica, 2012, 30(4): 639-645.

    Google Scholar

    [32] Su M, Alves T M, Li W, et al. Reassessing two contrasting late miocene-holocene stratigraphic frameworks for the pearl river mouth basin, northern South China sea [J]. Marine and Petroleum Geology, 2019, 102: 899-913. doi: 10.1016/j.marpetgeo.2018.12.034

    CrossRef Google Scholar

    [33] Yang J X, Wang X J, Jin J P, et al. The role of fluid migration in the occurrence of shallow gas and gas hydrates in the south of the pearl river mouth basin, South China Sea [J]. Interpretation, 2017, 5(3): SM1-SM11. doi: 10.1190/INT-2016-0197.1

    CrossRef Google Scholar

    [34] 杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4):1-14

    Google Scholar

    Yang Shengxiong, Liang Jinqiang, Lu Jingan, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea [J]. Earth Science Frontiers, 2017, 24(4): 1-14.

    Google Scholar

    [35] Huang J, Li A C, Wan S M. Sensitive grain-size records of Holocene East Asian summer monsoon in sediments of northern South China Sea slope [J]. Quaternary Research, 2011, 75(3): 734-744. doi: 10.1016/j.yqres.2011.03.002

    CrossRef Google Scholar

    [36] Lisiecki L E, Raymo M E. A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003.

    Google Scholar

    [37] 张晋, 李安春, 万世明, 等. 南海南部表层沉积物粒度分布特征及其影响因素[J]. 海洋地质与第四纪地质, 2016, 36(2):1-10

    Google Scholar

    ZHANG Jin, LI Anchun, WAN Shiming, et al. Grain size distribution of surface sediments in the southern South China Sea and influencing factors [J]. Marine Geology & Quaternary Geology, 2016, 36(2): 1-10.

    Google Scholar

    [38] Jan Weltje G, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics [J]. Sedimentary Geology, 2003, 162(1-2): 39-62. doi: 10.1016/S0037-0738(03)00235-5

    CrossRef Google Scholar

    [39] 金秉福. 粒度分析中偏度系数的影响因素及其意义[J]. 海洋科学, 2012, 36(2):129-135

    Google Scholar

    JIN Bingfu. Influencing factors and significance of the skewness coefficient in grain size analysis [J]. Marine Sciences, 2012, 36(2): 129-135.

    Google Scholar

    [40] 王星星. 南海珠江口外峡谷深水沉积作用及响应[D]. 浙江大学博士学位论文, 2019.

    Google Scholar

    WANG Xingxing. Deep-water sedimentary processes and response in the Pearl River Canyon, South China Sea[D]. Doctor Dissertation of Zhejiang University, 2019.

    Google Scholar

    [41] 李军, 高抒, 孙有斌. 冲绳海槽南部A23孔浊流沉积层的粒度特征[J]. 海洋地质与第四纪地质, 2005, 25(2):11-16

    Google Scholar

    LI Jun, GAO Shu, SUN Youbin. Grain-size characteristics of turbidite sediments in core a23 from the Southern Okinawa Trough [J]. Marine Geology & Quaternary Geology, 2005, 25(2): 11-16.

    Google Scholar

    [42] Shanmugam G. The bouma sequence and the turbidite mind set [J]. Earth-Science Reviews, 1997, 42(4): 201-229. doi: 10.1016/S0012-8252(97)81858-2

    CrossRef Google Scholar

    [43] 曹超, 雷怀彦. 南海北部有孔虫碳氧同位素特征与晚第四纪水合物分解的响应关系[J]. 吉林大学学报: 地球科学版, 2012, 42(S1):162-171

    Google Scholar

    CAO Chao, LEI Huaiyan. The response relationship between carbon and oxygen isotopic characteristics of foraminifera in the northern South China Sea and hydrate decomposition in the late quaternary [J]. Journal of Jilin University: Earth Science Edition, 2012, 42(S1): 162-171.

    Google Scholar

    [44] Lüdmann T, Wong H K, Dinu C, et al. Characterization of gas hydrate and free gas occurrences in the western black sea[C]//Abstracts of the Second International Symposium on Continental Margin Tectonics and Georesources. Qingdao: Chinese Society of Oceanography and Limnology, 2007: 18.

    Google Scholar

    [45] 张一辉. 南海典型沉积区粒度分形特征研究[D]. 合肥工业大学硕士学位论文, 2019.

    Google Scholar

    ZHANG Yihui. A study of fractal characteristic features of typical sediments from the South China Sea[D]. Master Dissertation of Hefei University of Technology, 2019.

    Google Scholar

    [46] 范天来, 范育新. 频率分布曲线和概率累积曲线在沉积物粒度数据分析中应用的对比[J]. 甘肃地质, 2010, 19(2):32-37

    Google Scholar

    FAN Tianlai, FAN Yuxin. A comparison of grain size expression methods: a case study [J]. Acta Geologica Gansu, 2010, 19(2): 32-37.

    Google Scholar

    [47] Passega R. Grain size representation by CM patterns as a geologic tool [J]. Journal of Sedimentary Research, 1964, 34(4): 830-847. doi: 10.1306/74D711A4-2B21-11D7-8648000102C1865D

    CrossRef Google Scholar

    [48] 张宝方. 南海北部陆坡区更新世以来沉积物粒度特征及沉积环境演化[D]. 中国海洋大学硕士学位论文, 2015.

    Google Scholar

    ZHANG Baofang. Grain size distribution and sedimentary environment evolution in northern South China Sea slope since pleistocene abstract[D]. Master Dissertation of Ocean University of China, 2015.

    Google Scholar

    [49] 冯轩, 吴永华, 杨宝菊, 等. 冲绳海槽西南端1.3ka以来异重流沉积记录及其古气候响应[J/OL]. 沉积学报, 2020.[2020-03-30]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=CJXB20200327002.

    Google Scholar

    FENG Xuan, WU Yonghua, YANG Baoju, et al. Records of hyperpycnal flow deposits in the southwestern Okinawa trough and their paleoclimatic response since 1.3 ka[J/OL]. Acta Sedimentologica Sinica, 2020. [2020-03-30]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=CJXB2020032700.

    Google Scholar

    [50] 徐尚, 王英民, 彭学超, 等. 台湾峡谷HD133柱状样中重力流、底流交互沉积的证据[J]. 地质学报, 2012, 86(11):1792-1798 doi: 10.3969/j.issn.0001-5717.2012.11.008

    CrossRef Google Scholar

    XU Shang, WANG Yingmin, PENG Xuechao, et al. Evidence for the interactive deposition between gravity and bottom currents revealed by core HD133 from Taiwan canyon [J]. Acta Geologica Sinica, 2012, 86(11): 1792-1798. doi: 10.3969/j.issn.0001-5717.2012.11.008

    CrossRef Google Scholar

    [51] 苏纪兰. 南海环流动力机制研究综述[J]. 海洋学报, 2005, 27(6):1-8

    Google Scholar

    SU Jilan. Overview of the South China Sea circulation and its dynamics [J]. Acta Oceanologica Sinica, 2005, 27(6): 1-8.

    Google Scholar

    [52] 徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10):98-105

    Google Scholar

    XU Jingping. Turbidity current research in the past century: an overview [J]. Periodical of Ocean University of China, 2014, 44(10): 98-105.

    Google Scholar

    [53] 李明坤. 南海西北部36 kyr BP以来的古气候环境演变与驱动机制[D]. 中国科学院大学博士学位论文, 2018.

    Google Scholar

    LI Mingkun. Paleoclimate and paleoenvironment evolutions in the Northwestern South China Sea over the past 36 kyr BP and the forcing mechanisms[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2018.

    Google Scholar

    [54] Huang J, Jiang F Q, Wan S M, et al. Terrigenous supplies variability over the past 22, 000 yr in the southern South China Sea slope: Relation to sea level and monsoon rainfall changes [J]. Journal of Asian Earth Sciences, 2016, 117: 317-327. doi: 10.1016/j.jseaes.2015.12.019

    CrossRef Google Scholar

    [55] Clarke S, Hubble T, Webster J, et al. Sedimentology, structure and age estimate of five continental slope submarine landslides, eastern Australia [J]. Australian Journal of Earth Sciences, 2016, 63(5): 631-652. doi: 10.1080/08120099.2016.1225600

    CrossRef Google Scholar

    [56] Pope E L, Talling P J, Urlaub M, et al. Are large submarine landslides temporally random or do uncertainties in available age constraints make it impossible to tell? [J]. Marine Geology, 2015, 369: 19-33. doi: 10.1016/j.margeo.2015.07.002

    CrossRef Google Scholar

    [57] Woodroffe C D, McGregor H V, Lambeck K, et al. Mid-Pacific microatolls record sea-level stability over the past 5000 yr [J]. Geology, 2012, 40(10): 951-954. doi: 10.1130/G33344.1

    CrossRef Google Scholar

    [58] Thom B G, Roy P S. Sea level change in New South Wales over the past 15, 000 years[M]//Hopley D. Australian Sea Levels in the Last 15000 Years: A Review. James Cook: University of North Queensland, 1983: 64-85.

    Google Scholar

    [59] Chappell J, Polach H. Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea [J]. Nature, 1991, 349(6305): 147-149. doi: 10.1038/349147a0

    CrossRef Google Scholar

    [60] Grant K M, Rohling E J, Ramsey C B, et al. Sea-level variability over five glacial cycles [J]. Nature, 2014, 5: 5076.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1566) PDF downloads(35) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint