2022 Vol. 42, No. 1
Article Contents

FAN Junning, ZENG Zhigang, ZHU Bowen, QI Haiyan. Distribution of lipid compounds in the sediments of the East Pacific Rise near 13°N and its implications for hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 26-36. doi: 10.16562/j.cnki.0256-1492.2021010201
Citation: FAN Junning, ZENG Zhigang, ZHU Bowen, QI Haiyan. Distribution of lipid compounds in the sediments of the East Pacific Rise near 13°N and its implications for hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 26-36. doi: 10.16562/j.cnki.0256-1492.2021010201

Distribution of lipid compounds in the sediments of the East Pacific Rise near 13°N and its implications for hydrothermal activity

More Information
  • The eruption and diffusion of hydrothermal materials will affect the surrounding sediments, and the study on the lipid in the sediments affected by hydrothermal activity is helpful to understand the influence of hydrothermal activity on sediments. In this research, N-alkanes and fatty acids in the sediments from E271 and E272 stations on the west flank of the East Pacific Rise near 13°N are analyzed by gas chromatography and mass spectrometry (GC-MS). C11—C35 N-alkanes, which are mainly distributed in a bimodal pattern, are detected in the sediments, in which short-chain alkanes and long-chain alkanes indicate the inputs of marine bacteria, terrestrial higher plants and materials from hydrothermal activities, respectively. Terrestrial materials are mainly from the American continent transported by wind. Furthermore, the composition and distribution of n-alkanes in the sediments suggest that the sediments of E272 station have experienced early diagenesis. 32 types of fatty acids are detected in the sediments from the stations of E271 and E272, which ranged from C8 to C24, and the total fatty acid contents of the two stations are 93.55 and 50.71~87.05 μg/g, respectively. The composition and distribution of characteristic fatty acids in the sediments exhibit the characteristics of hydrothermal input, indicating that the sediments have been affected by hydrothermal activities.

  • 加载中
  • [1] Rona P A. New evidence for seabed resources from global tectonics [J]. Ocean Management, 1973, 1: 145-159. doi: 10.1016/0302-184X(73)90009-7

    CrossRef Google Scholar

    [2] 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.

    Google Scholar

    ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.

    Google Scholar

    [3] Francheteau J, Needham H D, Choukroune P, et al. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise [J]. Nature, 1979, 277(5697): 523-528. doi: 10.1038/277523a0

    CrossRef Google Scholar

    [4] Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos rift [J]. Science, 1979, 203(4385): 1073-1083. doi: 10.1126/science.203.4385.1073

    CrossRef Google Scholar

    [5] Choukroune P, Francheteau J, Hekinian R. Tectonics of the East Pacific Rise near 12°50′N: a submersible study [J]. Earth and Planetary Science Letters, 1984, 68(1): 115-127. doi: 10.1016/0012-821X(84)90144-4

    CrossRef Google Scholar

    [6] Fouquet Y, Knott R, Cambon P, et al. Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the East Pacific Rise [J]. Earth and Planetary Science Letters, 1996, 144(1-2): 147-162. doi: 10.1016/0012-821X(96)00142-2

    CrossRef Google Scholar

    [7] Rona P A, Bemis K G, Silver D, et al. Acoustic imaging, visualization, and quantification of buoyant hydrothermal plumes in the Ocean [J]. Marine Geophysical Researches, 2002, 23(2): 147-168. doi: 10.1023/A:1022481315125

    CrossRef Google Scholar

    [8] Khripounoff A, Alberic P. Settling of particles in a hydrothermal vent field (East Pacific Rise 13°N) measured with sediment traps [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(6): 729-744. doi: 10.1016/0198-0149(91)90009-5

    CrossRef Google Scholar

    [9] 袁春伟. 东太平洋海隆13°N附近沉积物元素地球化学研究[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2007.

    Google Scholar

    YUAN Chunwei. Elemental geochemistry of sediments near 13°N East Pacific Rise[D]. Master Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2007.

    Google Scholar

    [10] Hekinian R, Francheteau J, Renard V, et al. Intense hydrothermal activity at the axis of the east pacific rise near 13°N: Sumbersible witnesses the growth of sulfide chimney [J]. Marine Geophysical Researches, 1983, 6(1): 1-14. doi: 10.1007/BF00300395

    CrossRef Google Scholar

    [11] 余少雄. 东太平洋海隆13°N附近含金属沉积物中的有机碳氮研究 [D] . 中国科学院海洋研究所博士学位论文, 2010.

    Google Scholar

    YU Shaoxiong. Total organic carbon and nitrogen from metalliferous sediment on the flank of the east Pacific Rise 13°N[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2010.

    Google Scholar

    [12] 武力. 东太平洋海隆13°N含金属沉积物研究[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2011.

    Google Scholar

    WU Li. Study on the metalliferous sediments near 13°N East pacific rise[D]. Master Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2011.

    Google Scholar

    [13] Hedrick D B, Pledger R D, White D C, et al. In situ microbial ecology of hydrothermal vent sediments [J]. FEMS Microbiology Letters, 1992, 101(1): 1-10.

    Google Scholar

    [14] Yamanaka T, Sakata S. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean [J]. Organic Geochemistry, 2004, 35(5): 573-582. doi: 10.1016/j.orggeochem.2004.01.002

    CrossRef Google Scholar

    [15] Brault M, Marty J C, Saliot A. Fatty acids from particulate matter and sediment in hydrothermal environments from the east Pacific rise, near 13°N [J]. Organic Geochemistry, 1984, 6: 217-222. doi: 10.1016/0146-6380(84)90043-3

    CrossRef Google Scholar

    [16] Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. Berlin: Springer-Verlag, 1984: 1-188.

    Google Scholar

    [17] Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change [J]. Freshwater Biology, 2010, 3(3): 259-265.

    Google Scholar

    [18] Blumer M, Guillard R P L, Chase T. Hydrocarbons of marine phytoplankton [J]. Marine Biology, 1971, 8(3): 183-189. doi: 10.1007/BF00355214

    CrossRef Google Scholar

    [19] Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science, 1967, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322

    CrossRef Google Scholar

    [20] Goñi M A, Ruttenberg K C, Eglinton T I. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico [J]. Nature, 1997, 389(6648): 275-278. doi: 10.1038/38477

    CrossRef Google Scholar

    [21] Parrish C C. Marine Chemistry[M]. Berlin Heidelberg: Springer, 2000: 194-220.

    Google Scholar

    [22] Rajendran N, Suwa Y, Urushigawa Y. Distribution of phospholipid ester-linked fatty acid biomarkers for bacteria in the sediment of Ise Bay, Japan [J]. Marine Chemistry, 1993, 42(1): 39-56. doi: 10.1016/0304-4203(93)90248-M

    CrossRef Google Scholar

    [23] Wannigama G P, Volkman J K, Gillan F T, et al. A comparison of lipid components of the fresh and dead leaves and pneumatophores of the mangrove Avicennia marina [J]. Phytochemistry, 1981, 20(4): 659-666. doi: 10.1016/0031-9422(81)85152-7

    CrossRef Google Scholar

    [24] Falk-Petersen S, Dahl T M, Scott C L, et al. Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters [J]. Marine Ecology Progress Series, 2002, 227: 187-194. doi: 10.3354/meps227187

    CrossRef Google Scholar

    [25] Feng X J, Simpson M J. The distribution and degradation of biomarkers in Alberta grassland soil profiles [J]. Organic Geochemistry, 2007, 38(9): 1558-1570. doi: 10.1016/j.orggeochem.2007.05.001

    CrossRef Google Scholar

    [26] Peters K E, Walters C C, Moldowan J M. The Biomarker Guide: Volume 1: Biomarkers and Isotopes in the Environment and Human History[M]. Cambridge: Cambridge University Press, 2004: 101-133.

    Google Scholar

    [27] Macdonald K C, Fox P J, Miller S, et al. The East Pacific Rise and its flanks 8-18°N: History of segmentation, propagation and spreading direction based on SeaMarc II and Sea Beam studies [J]. Marine Geophysical Researches, 1992, 14(4): 299-344. doi: 10.1007/BF01203621

    CrossRef Google Scholar

    [28] 张倩, 宋金明, 彭全材, 等. 胶州湾表层海水中的正构烷烃及其来源解析[J]. 环境科学, 2017, 38(7):2763-2772

    Google Scholar

    ZHANG Qian, SONG Jinming, PENG Quancai, et al. Distribution and Sources of n-alkanes in Surface Seawater of Jiaozhou Bay [J]. Environmental Science, 2017, 38(7): 2763-2772.

    Google Scholar

    [29] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21247-2007 海面溢油鉴别系统规范[S]. 北京: 中国标准出版社, 2008: 1-27.

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. GB/T 21247-2007 Specifications for identification system of spilled oils on the sea[S]. Beijing: China Standard Press, 2008: 1-27.

    Google Scholar

    [30] 彭全材, 宋金明, 李军, 等. 超声萃取-气相色谱法测定扇贝中30种脂肪酸[J]. 食品科学, 2012, 33(12):163-168

    Google Scholar

    PENG Quancai, SONG Jinming, LI Jun, et al. Determination of 30 fatty acids in scallop by ultrasonic extraction gas chromatography [J]. Food Science, 2012, 33(12): 163-168.

    Google Scholar

    [31] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 22223-2008 食品中总脂肪、饱和脂肪(酸)、不饱和脂肪(酸)的测定: 水解提取-气相色谱法[S]. 北京: 中国标准出版社, 2008: 1-13.

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. GB/T 22223-2008 Determination of total fat saturated fat and unsaturated fat in foods-Hydrolytic extraction-gas chromatography[S]. Beijing: China Standard Press, 2008: 1-13.

    Google Scholar

    [32] Sikes E L, Uhle M E, Nodder S D, et al. Sources of organic matter in a coastal marine environment: Evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand [J]. Marine Chemistry, 2009, 113(3-4): 149-163. doi: 10.1016/j.marchem.2008.12.003

    CrossRef Google Scholar

    [33] Duan Y. Organic geochemistry of recent marine sediments from the Nansha Sea, China [J]. Organic Geochemistry, 2000, 31(2-3): 159-167. doi: 10.1016/S0146-6380(99)00135-7

    CrossRef Google Scholar

    [34] Doskey P V. Spatial variations and chronologies of aliphatic hydrocarbons in lake michigan sediments [J]. Environmental Science & Technology, 2001, 35(2): 247-254.

    Google Scholar

    [35] Lein A Y, Peresypkin V I, Simoneit B R T. Origin of hydrocarbons in hydrothermal sulfide ores in the mid-atlantic ridge [J]. Lithology and Mineral Resources, 2003, 38(5): 383-393. doi: 10.1023/A:1025525818526

    CrossRef Google Scholar

    [36] Nishimura M, Baker E W. Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments [J]. Geochimica et Cosmochimica Acta, 1986, 50(2): 299-305. doi: 10.1016/0016-7037(86)90178-X

    CrossRef Google Scholar

    [37] Grimalt J, Albaigés J. Sources and occurrence of C12-C22n-alkane distributions with even carbon-number preference in sedimentary environments [J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1379-1384. doi: 10.1016/0016-7037(87)90322-X

    CrossRef Google Scholar

    [38] Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II [J]. Organic Geochemistry, 1987, 11(6): 513-527. doi: 10.1016/0146-6380(87)90007-6

    CrossRef Google Scholar

    [39] Kvenvolden K A. Molecular distributions of normal fatty acids and paraffins in some lower cretaceous sediments [J]. Nature, 1966, 209(5023): 573-577. doi: 10.1038/209573a0

    CrossRef Google Scholar

    [40] 刘季花, 石学法, 陈丽蓉, 等. 东太平洋沉积物中粘土组分的REEs和εNd: 粘土来源的证据[J]. 中国科学 D辑: 地球科学, 2005, 48(5):701-712 doi: 10.1360/03yd0276

    CrossRef Google Scholar

    LIU Jihua, SHI Xuefa, CHEN Lirong, et al. REE and εNd of clay fractions in sediments from the eastern Pacific Ocean: Evidence for clay sources [J]. Science in China Series D: Earth Sciences, 2005, 48(5): 701-712. doi: 10.1360/03yd0276

    CrossRef Google Scholar

    [41] Ohkouchi N, Kawamura K, Kawahata H, et al. Latitudinal distributions of terrestrial biomarkers in the sediments from the Central Pacific [J]. Geochimica et Cosmochimica Acta, 1997, 61(9): 1911-1918. doi: 10.1016/S0016-7037(97)00040-9

    CrossRef Google Scholar

    [42] Pagani M, Freeman K H, Arthur M A. Isotope analyses of molecular and total organic carbon from miocene sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 37-49. doi: 10.1016/S0016-7037(99)00151-9

    CrossRef Google Scholar

    [43] Brault M, Simoneit B R T, Saliot A. Trace petroliferous organic matter associated with massive hydrothermal sulfides from the east pacific rise at 13 and 2I°N [J]. Oceanologica Acta, 1989, 12(4): 405-415.

    Google Scholar

    [44] Larsen G, Chilingar G V. Diagenesis in Sediments[M]. Amsterdam: Elsevier, 1967: 1-5.

    Google Scholar

    [45] Brassell S C, Eglinton G, Maxwell J R, et al. Natural background of alkanes in the aquatic environment[M]//Hutzinger O, Van Lelyveld I H, Zoeteman B C J. Aquatic Pollutants. Oxford: Elsevier Ltd., 1978: 69-86.

    Google Scholar

    [46] Huang X, Chen S, Zeng Z G, et al. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough [J]. Marine Pollution Bulletin, 2017, 115(1-2): 507-514. doi: 10.1016/j.marpolbul.2016.12.034

    CrossRef Google Scholar

    [47] Johnson R W, Calder J A. Early diagenesis of fatty acids and hydrocarbons in a salt marsh environment [J]. Geochimica et Cosmochimica Acta, 1973, 37(8): 1943-1955. doi: 10.1016/0016-7037(73)90150-6

    CrossRef Google Scholar

    [48] Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U. K. —I: source correlation of leaf wax inputs to the sedimentary lipid record [J]. Organic Geochemistry, 1991, 17(6): 901-912. doi: 10.1016/0146-6380(91)90031-E

    CrossRef Google Scholar

    [49] Meyers P A, Ishiwatari R. Organic Matter Accumulation Records in Lake Sediments[M]. Berlin Heidelberg: Springer, 1995: 279-328.

    Google Scholar

    [50] Simoneit B R T, Brault M, Saliot A. Hydrocarbons associated with hydrothermal minerals, vent waters and talus on the East Pacific Rise and Mid-Atlantic Ridge [J]. Applied Geochemistry, 1990, 5(1-2): 115-124. doi: 10.1016/0883-2927(90)90042-4

    CrossRef Google Scholar

    [51] Brault M, Simoneit B R T, Marty J C, et al. Hydrocarbons in waters and particulate material from hydrothermal environments at the East Pacific Rise, 13°N [J]. Organic Geochemistry, 1988, 12(3): 209-219. doi: 10.1016/0146-6380(88)90259-8

    CrossRef Google Scholar

    [52] Breier J A, Toner B M, Fakra S C, et al. Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50'N East Pacific Rise [J]. Geochimica et Cosmochimica Acta, 2012, 88: 216-236. doi: 10.1016/j.gca.2012.04.003

    CrossRef Google Scholar

    [53] Huang X, Zeng Z G, Chen S, et al. Abundance and distribution of fatty acids in sediments of the south mid-Atlantic ridge [J]. Journal of Ocean University of China, 2015, 14(2): 277-283. doi: 10.1007/s11802-015-2613-1

    CrossRef Google Scholar

    [54] Wakeham S G, Hedges J I, Lee C, et al. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1997, 44(9-10): 2132-2162.

    Google Scholar

    [55] Li J W, Zhou H Y, Peng X T, et al. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney [J]. Journal of Sea Research, 2011, 65(3): 333-339. doi: 10.1016/j.seares.2011.01.005

    CrossRef Google Scholar

    [56] Ohkouchi N. Lipids as biogeochemical tracers in the Late Quaternary[D]. Doctor Dissertation of University of Tokyo, 1995.

    Google Scholar

    [57] Oliver J D, Colwell R R. Extractable lipids of gram-negative Marine Bacteria: fatty-acid composition [J]. International Journal of Systematic Bacteriology, 1973, 23(4): 442-458. doi: 10.1099/00207713-23-4-442

    CrossRef Google Scholar

    [58] Nercessian O, Bienvenu N, Moreira D, et al. Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments [J]. Environmental Microbiology, 2005, 7(1): 118-132. doi: 10.1111/j.1462-2920.2004.00672.x

    CrossRef Google Scholar

    [59] Li Y X, Li F C, Zhang X W, et al. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (~ 13°N) [J]. Extremophiles, 2008, 12(4): 573-585. doi: 10.1007/s00792-008-0159-5

    CrossRef Google Scholar

    [60] 伏美燕, 杨群慧, 王虎. 深海热液环境中脂肪酸组成的研究进展[J]. 海洋科学, 2008, 32(5):78-86

    Google Scholar

    FU Meiyan, YANG Qunhui, WANG Hu. Progress in the composition research of fatty acids in deep-sea hydrothermal environment [J]. Marine Sciences, 2008, 32(5): 78-86.

    Google Scholar

    [61] Fullarton J G, Wood P, Sargent J R. Fatty acid composition of lipids from sulphuroxidizing and methylotrophic bacteria from thyasirid and lucinid bivalves [J]. Journal of the Marine Biological Association of the United Kingdom, 1995, 75(2): 445-454. doi: 10.1017/S0025315400018294

    CrossRef Google Scholar

    [62] Colaço A, Desbruyères D, Guezennec J. Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community [J]. Marine Ecology, 2007, 28(1): 15-24. doi: 10.1111/j.1439-0485.2006.00123.x

    CrossRef Google Scholar

    [63] Saliot A, Laureillard J, Scribe P, et al. Evolutionary trends in the lipid biomarker approach for investigating the biogeochemistry of organic matter in the marine environment [J]. Marine Chemistry, 1991, 36(1-4): 233-248. doi: 10.1016/S0304-4203(09)90064-0

    CrossRef Google Scholar

    [64] Rau G H. Hydrothermal vent clam and tube worm 13C/12C: further evidence of nonphotosynthetic food Sources [J]. Science, 1981, 213(4505): 338-340. doi: 10.1126/science.213.4505.338

    CrossRef Google Scholar

    [65] Ben-Mlih F, Marty J C, Fiala-Médioni A. Fatty acid composition in deep hydrothermal vent symbiotic bivalves [J]. Journal of Lipid Research, 1992, 33(12): 1797-1806. doi: 10.1016/S0022-2275(20)41337-9

    CrossRef Google Scholar

    [66] Burd B J, Thomson R E. Distribution of zooplankton associated with the Endeavour Ridge hydrothermal plume [J]. Journal of Plankton Research, 1995, 17(5): 965-997. doi: 10.1093/plankt/17.5.965

    CrossRef Google Scholar

    [67] Burd B J, Thomson R E, Jamieson G S. Composition of a deep scattering layer overlying a mid-ocean ridge hydrothermal plume [J]. Marine Biology, 1992, 113(3): 517-526. doi: 10.1007/BF00349179

    CrossRef Google Scholar

    [68] Ackman K G, Linke B A, Hingley J. Some details of fatty acids and alcohols in the lipids of north Atlantic copepods [J]. Journal of the Fisheries Board of Canada, 2011, 31(11): 1812-1818.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(2968) PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint