2021 Vol. 41, No. 4
Article Contents

LIU Lu, XIE Yuanyun, CHI Yunping, KANG Chunguo, WU Peng, WEI Zhenyu, ZHANG Yuexin, ZHANG Man. Geochemical compositions of the Onqin Daga Sand Land and Horqin Sand Land and their implications for weathering, sedimentation and provenance[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 192-206. doi: 10.16562/j.cnki.0256-1492.2020123102
Citation: LIU Lu, XIE Yuanyun, CHI Yunping, KANG Chunguo, WU Peng, WEI Zhenyu, ZHANG Yuexin, ZHANG Man. Geochemical compositions of the Onqin Daga Sand Land and Horqin Sand Land and their implications for weathering, sedimentation and provenance[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 192-206. doi: 10.16562/j.cnki.0256-1492.2020123102

Geochemical compositions of the Onqin Daga Sand Land and Horqin Sand Land and their implications for weathering, sedimentation and provenance

More Information
  • Sand and fine sand fractions (<10 μm and<63 μm) collected from the Onqin Daga Sand Land and the Horqin Sandy Land are analyzed for geochemical elements including major elements, trace elements, rare earth elements and Sr-Nd isotopes, in order to evaluate the chemical weathering, sedimentary characteristics, source areas, and the contribution of the Xar Moron River to the mass exchange between the two sands. The sediments are characterized by such features as low CIA, PIA and CIW values, high WIP and ICV values, low Zr/Sc ratio, A-CN-K and MFW diagram suggesting that the sediments are in the early stage of chemical weathering and low in maturity, and only experienced a simple process of sedimentary recycling. The provenance discrimination diagram shows that the parent rocks of Onqin Daga Sand and Horqin Sandy Land are dominated by intermediate-acid granitic rocks and have a mixed source from the western part of the Great Hinggan Mountains and the northern part of the North China Craton. In addition, the fine components, especially the component<10 μm, are very similar in geochemical composition for the two sandy areas, and it is believed that fine grain matters may have been transported from the Onqin Daga Sand Land to the Horqin Sand Land taking the Xar Moron River as a bridge. At the same time, atmospheric dust transport under prevailing winds may also play a certain role in fine sediment transportation.

  • 加载中
  • [1] Che X D, Li G J. Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon [J]. Quaternary Research, 2013, 80(3): 545-551. doi: 10.1016/j.yqres.2013.05.007

    CrossRef Google Scholar

    [2] Zhang H Z, Lu H Y, Xu X S, et al. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U-Pb age patterns [J]. Journal of Geophysical Research: Earth Surface, 2016, 121(11): 2085-2099. doi: 10.1002/2016JF003936

    CrossRef Google Scholar

    [3] Sun J M. Source regions and formation of the loess sediments on the high mountain regions of northwestern China [J]. Quaternary Research, 2002, 58(3): 341-351. doi: 10.1006/qres.2002.2381

    CrossRef Google Scholar

    [4] Shi Z G, Liu X D. Distinguishing the provenance of fine-grained eolian dust over the Chinese Loess Plateau from a modelling perspective [J]. Tellus B: Chemical and Physical Meteorology, 2011, 63(5): 959-970. doi: 10.1111/j.1600-0889.2011.00561.x

    CrossRef Google Scholar

    [5] Chen Z, Li G J. Evolving sources of eolian detritus on the Chinese Loess Plateau since early Miocene: tectonic and climatic controls [J]. Earth and Planetary Science Letters, 2013, 371-372: 220-225. doi: 10.1016/j.jpgl.2013.03.044

    CrossRef Google Scholar

    [6] Nie J S, Peng W B, Möller A, et al. Provenance of the upper Miocene-Pliocene red clay deposits of the Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 2014, 407: 35-47. doi: 10.1016/j.jpgl.2014.09.026

    CrossRef Google Scholar

    [7] Nie J S, Peng W B. Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau [J]. Aeolian Research, 2014, 13: 71-75. doi: 10.1016/j.aeolia.2014.03.005

    CrossRef Google Scholar

    [8] 陈骏, 李高军. 亚洲风尘系统地球化学示踪研究[J]. 中国科学: 地球科学, 2011, 54(9):1279-1301 doi: 10.1007/s11430-011-4269-z

    CrossRef Google Scholar

    CHEN Jun, LI Gaojun. Geochemical studies on the source region of Asian dust [J]. Science China Earth Sciences, 2011, 54(9): 1279-1301. doi: 10.1007/s11430-011-4269-z

    CrossRef Google Scholar

    [9] 陈骏, 安芷生, 刘连文, 等. 最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学(D辑), 2001, 44(5):403-413 doi: 10.1007/BF02909779

    CrossRef Google Scholar

    CHEN Jun, AN Zhisheng, LIU Lianwen, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland [J]. Science in China Series D: Earth Sciences, 2001, 44(5): 403-413. doi: 10.1007/BF02909779

    CrossRef Google Scholar

    [10] 杨杰东, 陈骏, 饶文波, 等. 中国沙漠的同位素分区特征[J]. 地球化学, 2007, 36(5):516-524 doi: 10.3321/j.issn:0379-1726.2007.05.010

    CrossRef Google Scholar

    YANG Jiedong, CHEN Jun, RAO Wenbo, et al. Isotopic partition characteristics of Chinese deserts [J]. Geochimica, 2007, 36(5): 516-524. doi: 10.3321/j.issn:0379-1726.2007.05.010

    CrossRef Google Scholar

    [11] 谢静, 吴福元, 丁仲礼. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义[J]. 岩石学报, 2007, 23(2):523-528 doi: 10.3969/j.issn.1000-0569.2007.02.028

    CrossRef Google Scholar

    XIE Jing, WU Fuyuan, DING Zhongli. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance [J]. Acta Petrologica Sinica, 2007, 23(2): 523-528. doi: 10.3969/j.issn.1000-0569.2007.02.028

    CrossRef Google Scholar

    [12] 朱迎新. 章古台沙地樟子松人工林固沙效果探究[J]. 理论界, 2014(5):62-64 doi: 10.3969/j.issn.1003-6547.2014.05.017

    CrossRef Google Scholar

    ZHU Yingxin. Study on the effect of pinus sylva plantation on sand fixation in Zhanggu sandy land [J]. Theory Horizon, 2014(5): 62-64. doi: 10.3969/j.issn.1003-6547.2014.05.017

    CrossRef Google Scholar

    [13] 杨艳, 程捷, 田明中, 等. 近50年来哈尔滨市沙尘暴发生规律及气象特征研究[J]. 干旱区资源与环境, 2012, 26(11):54-60

    Google Scholar

    YANG Yan, CHENG Jie, TIAN Mingzhong, et al. The spatial and temporal distribution of dust-storm and its meteorological in Harbin [J]. Journal of Arid Land Resources and Environment, 2012, 26(11): 54-60.

    Google Scholar

    [14] 谢远云, 孙磊, 康春国, 等. 松嫩沙地Sr-Nd同位素组成特征[J]. 沉积学报, 2020, 38(4):771-780

    Google Scholar

    XIE Yuanyun, SUN Lei, KANG Chunguo, et al. Sr-Nd isotopic partition characteristics of the Songnen sandy land [J]. Acta Sedimentologica Sinica, 2020, 38(4): 771-780.

    Google Scholar

    [15] Xie Y Y, Kang C G, Chi Y P, et al. The loess deposits in Northeast China: the linkage of loess accumulation and geomorphic-climatic features at the easternmost edge of the Eurasian loess belt [J]. Journal of Asian Earth Sciences, 2019, 181: 103914. doi: 10.1016/j.jseaes.2019.103914

    CrossRef Google Scholar

    [16] Xie Y Y, Liu L, Kang C G, et al. Sr-Nd isotopic characteristics of the Northeast Sandy Land, China and their implications for tracing sources of regional dust [J]. Catena, 2020, 184: 104303. doi: 10.1016/j.catena.2019.104303

    CrossRef Google Scholar

    [17] 张晓娟, 季宏兵, 冯晓静, 等. 岩溶盆地红土风化剖面的元素地球化学研究[J]. 地理科学, 2017, 37(6):944-951

    Google Scholar

    ZHANG Xiaojuan, JI Hongbing, FENG Xiaojing, et al. Element geochemistry characteristic of the red soil weathering profiles in the Karst Basin [J]. Scientia Geographica Sinica, 2017, 37(6): 944-951.

    Google Scholar

    [18] Mclennan S M. Weathering and global denudation [J]. The Journal of Geology, 1993, 101(2): 295-303. doi: 10.1086/648222

    CrossRef Google Scholar

    [19] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [20] Harnois L. The CIW index: A new chemical index of weathering [J]. Sedimentary Geology, 1988, 55(3-4): 319-322. doi: 10.1016/0037-0738(88)90137-6

    CrossRef Google Scholar

    [21] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance [J]. Geology, 1995, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    CrossRef Google Scholar

    [22] Parker A. An index of weathering for silicate rocks [J]. Geological Magazine, 1970, 107(6): 501-504. doi: 10.1017/S0016756800058581

    CrossRef Google Scholar

    [23] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3

    CrossRef Google Scholar

    [24] Cullers R L, Podkovyrov V N. Geochemistry of the mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling [J]. Precambrian Research, 2000, 104(1-2): 77-93. doi: 10.1016/S0301-9268(00)00090-5

    CrossRef Google Scholar

    [25] Garzanti E, Padoan M, Andò S, et al. Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift [J]. The Journal of Geology, 2013, 121(6): 547-580. doi: 10.1086/673259

    CrossRef Google Scholar

    [26] Ohta T, Arai H. Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering [J]. Chemical Geology, 2007, 240(3-4): 280-297. doi: 10.1016/j.chemgeo.2007.02.017

    CrossRef Google Scholar

    [27] Condie K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales [J]. Chemical Geology, 1993, 104(1-4): 1-37. doi: 10.1016/0009-2541(93)90140-E

    CrossRef Google Scholar

    [28] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. London: Blackwell Scientific, 1985.

    Google Scholar

    [29] Yang H, Ge W C, Yu Q, et al. Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and petrogenesis of Middle to Late Triassic I-type granitoids in the Xing’an Block, northeast China: Implications for early Mesozoic tectonic evolution of the central Great Xing’an Range [J]. Journal of Asian Earth Sciences, 2016, 119: 30-48. doi: 10.1016/j.jseaes.2016.01.012

    CrossRef Google Scholar

    [30] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J. Processes Controlling the Composition of Clastic Sediments. Boulder: Geological Society of America, 1993, 284: 21-40.

    Google Scholar

    [31] Cullers R L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies [J]. Lithos, 2000, 51(3): 181-203. doi: 10.1016/S0024-4937(99)00063-8

    CrossRef Google Scholar

    [32] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292

    CrossRef Google Scholar

    [33] Li G J, Pettke T, Chen J. Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene [J]. Geology, 2011, 39(3): 199-202. doi: 10.1130/G31734.1

    CrossRef Google Scholar

    [34] Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust [J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3904-3914. doi: 10.1016/j.gca.2007.04.033

    CrossRef Google Scholar

    [35] Li G J, Chen J, Ji J F, et al. Natural and anthropogenic sources of East Asian dust [J]. Geology, 2009, 37(8): 727-730. doi: 10.1130/G30031A.1

    CrossRef Google Scholar

    [36] 李小妹, 严平, 钱瑶, 等. 西拉木伦河流域地表沉积物粒度、化学元素分布特征[J]. 干旱区研究, 2017, 34(1):191-199

    Google Scholar

    LI Xiaomei, YAN Ping, QIAN Yao, et al. Spatial distribution of grain size and chemical elements in surface sediments in the Xar Moron River Basin [J]. Arid Zone Research, 2017, 34(1): 191-199.

    Google Scholar

    [37] Condie K C. Another look at rare earth elements in shales [J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2527-2531. doi: 10.1016/0016-7037(91)90370-K

    CrossRef Google Scholar

    [38] Xie Y Y, Chi Y P, Meng J, et al. Grain-size and Sr-Nd isotopic compositions of dry- and wet-deposited dusts during the same dust-storm event in Harbin, China: implications for source, transport-deposition modes, dynamic mechanism and formation of eolian loess [J]. Environmental Earth Sciences, 2015, 74(8): 6489-6502. doi: 10.1007/s12665-015-4747-2

    CrossRef Google Scholar

    [39] Grousset F E, Biscaye P E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes [J]. Chemical Geology, 2005, 222(3-4): 149-167. doi: 10.1016/j.chemgeo.2005.05.006

    CrossRef Google Scholar

    [40] Rao W B, Chen J, Yang J D, et al. Sr-Nd isotopic characteristics of eolian deposits in the Erdos Desert and Chinese Loess Plateau: implications for their provenances [J]. Geochemical Journal, 2008, 42(3): 273-282. doi: 10.2343/geochemj.42.273

    CrossRef Google Scholar

    [41] 曹建华, 刘志辉, 李俊有. 克什克腾旗“三河源”生态保护区人工增雨工程建设的必要性[J]. 内蒙古科技与经济, 2016(14):69-70 doi: 10.3969/j.issn.1007-6921.2016.14.036

    CrossRef Google Scholar

    CAO Jianhua, LIU Zhihui, LI Junyou. A study on artificial precipitation in the Hexigtenqi ecological protection zone [J]. Inner Mongolia Science Technology & Economy, 2016(14): 69-70. doi: 10.3969/j.issn.1007-6921.2016.14.036

    CrossRef Google Scholar

    [42] 张瀚之, 鹿化煜, 弋双文, 等. 中国北方沙漠/沙地锆石形态特征及其对物源的指示[J]. 第四纪研究, 2013, 33(2):334-344 doi: 10.3969/j.issn.1001-7410.2013.02.15

    CrossRef Google Scholar

    ZHANG Hanzhi, LU Huayu, YI Shuangwen, et al. Zircon typological analyses of the major deserts/sand fields in northern China and its implication for identifying sediment source [J]. Quaternary Sciences, 2013, 33(2): 334-344. doi: 10.3969/j.issn.1001-7410.2013.02.15

    CrossRef Google Scholar

    [43] Sun D H, Bloemendal J, Rea D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications [J]. Catena, 2004, 55(3): 325-340. doi: 10.1016/S0341-8162(03)00109-7

    CrossRef Google Scholar

    [44] 谢远云, 孟杰, 郭令芬, 等. 哈尔滨沙尘沉降物稀土元素地球化学特征及其物源分析[J]. 地球科学—中国地质大学学报, 2013, 38(5):923-933 doi: 10.3799/dqkx.2013.091

    CrossRef Google Scholar

    XIE Yuanyun, MENG Jie, GUO Lingfen, et al. REE geochemistry for sand-dust fallouts in Harbin, Heilongjiang province and provenance analysis [J]. Earth Science—Journal of China University of Geosciences, 2013, 38(5): 923-933. doi: 10.3799/dqkx.2013.091

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(3018) PDF downloads(145) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint