2021 Vol. 41, No. 5
Article Contents

LI Jing, LIU Changling, WU Nengyou, HE Xingliang, MENG Qingguo, XU Xiaoqing, CHEN Ye. A review on microbial aerobic methane oxidation in marine environment[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 67-76. doi: 10.16562/j.cnki.0256-1492.2020112302
Citation: LI Jing, LIU Changling, WU Nengyou, HE Xingliang, MENG Qingguo, XU Xiaoqing, CHEN Ye. A review on microbial aerobic methane oxidation in marine environment[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 67-76. doi: 10.16562/j.cnki.0256-1492.2020112302

A review on microbial aerobic methane oxidation in marine environment

More Information
  • The aerobic oxidation of methane driven by methanotrophs is a key process for methane migration and transformation in marine environment. Its contribution to the degradation of methane should not be ignored because it may effectively reduce methane flux to the atmosphere and affect the carbon cycle in the sea. In this paper, a large number of domestic and foreign literatures are systematically investigated, from which it is found that the aerobic oxidation of methane occurs widely in marine environment. It may even occur in some extreme environments with very high pressure and dynamic migration of methane seepage, such as the deep sea and hydrothermal vents at depths of more than 3 000 m. In these environments, methanotrophs are mainly predominated by the type I of oxidizing bacteria. Meanwhile, the type I and type II of oxidizing bacteria have a certain bias to environmental conditions such as methane and trace metal elements, and the types of oxidizing bacteria are also different in water and sediment. At the same time, temporal and spatial differences occur in the aerobic oxidation intensity of methane, which is significantly affected by such environmental factors as temperature, methane concentration, oxygen concentration and trace metal elements. However, the influence of pressure and methane seepage on aerobic oxidation is not so clear up to date. Further research and exploration are required so as to enrich the knowledge on diversity of methane-oxidizing bacteria and improve the understanding of their physiological and ecological characteristics. In addition, it is a need to carry out detailed research on the aerobic oxidation process under the condition of submarine high-pressure leakage, in order to better understand the oxidation process of the environment. It would be of great significance to the revealing of the mechanism of methane migration and transformation and evaluation of its ecological and environmental effects.

  • 加载中
  • [1] Emerson S, Hedges J. Chemical oceanography and the marine carbon cycle [J]. Journal of the American Chemical Society, 2008, 131(6): 2417-2418.

    Google Scholar

    [2] Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process [J]. Annual Review of Microbiology, 2009, 63(1): 311-334. doi: 10.1146/annurev.micro.61.080706.093130

    CrossRef Google Scholar

    [3] Judd A G, Hovland M, Dimitrov L I, et al. The geological methane budget at continental margins and its influence on climate change [J]. Geofluids, 2002, 2(2): 109-126. doi: 10.1046/j.1468-8123.2002.00027.x

    CrossRef Google Scholar

    [4] Wang Y Z, Wegener G, Hou J L, et al. Expanding anaerobic alkane metabolism in the domain of Archaea [J]. Nature Microbiology, 2019, 4(4): 595-602. doi: 10.1038/s41564-019-0364-2

    CrossRef Google Scholar

    [5] 冯东, 陈多福, 苏正, 等. 海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J]. 现代地质, 2005, 19(1):26-32 doi: 10.3969/j.issn.1000-8527.2005.01.004

    CrossRef Google Scholar

    FENG Dong, CHEN Duofu, SU Zheng, et al. Characteristics of cold seep carbonates and microbial processes in gas seep system [J]. Geoscience, 2005, 19(1): 26-32. doi: 10.3969/j.issn.1000-8527.2005.01.004

    CrossRef Google Scholar

    [6] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12):1277-1286 doi: 10.11867/j.issn.1001-8166.2017.12.1277

    CrossRef Google Scholar

    WANG Fengping, CHEN Yunru. Progress and prospect in deep biosphere investigation [J]. Advances in Earth Science, 2017, 32(12): 1277-1286. doi: 10.11867/j.issn.1001-8166.2017.12.1277

    CrossRef Google Scholar

    [7] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926

    CrossRef Google Scholar

    [8] Okita N, Hoaki T, Suzuki S, et al. Characteristics of microbial community structure at the seafloor surface of the nankai trough [J]. Journal of Pure and Applied Microbiology, 2019, 13(4): 1917-1928. doi: 10.22207/JPAM.13.4.04

    CrossRef Google Scholar

    [9] Ristova P P, Wenzhöfer F, Ramette A, et al. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth) [J]. Biogeosciences, 2012, 9(12): 5031-5048. doi: 10.5194/bg-9-5031-2012

    CrossRef Google Scholar

    [10] Carere C R, McDonald B, Peach H A, et al. Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph [J]. Frontiers in Microbiology, 2019, 10: 1873. doi: 10.3389/fmicb.2019.01873

    CrossRef Google Scholar

    [11] Leonte M, Kessler J D, Kellermann M Y, et al. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin [J]. Geochimica et Cosmochimica Acta, 2017, 204: 375-387. doi: 10.1016/j.gca.2017.01.009

    CrossRef Google Scholar

    [12] Tavormina P L, Hatzenpichler R, McGlynn S, et al. Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the 'deep sea-1' clade of marine methanotrophs [J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(1): 251-259.

    Google Scholar

    [13] Ketzer M, Praeg D, Pivel M A G, et al. Gas seeps at the edge of the gas hydrate stability zone on Brazil's continental margin [J]. Geosciences, 2019, 9(5): 193. doi: 10.3390/geosciences9050193

    CrossRef Google Scholar

    [14] 薛明, 翁艺斌, 刘光全, 等. 石油与天然气生产过程甲烷逃逸排放检测与核算研究现状及建议[J]. 气候变化研究进展, 2019, 15(2):187-196 doi: 10.12006/j.issn.1673-1719.2018.118

    CrossRef Google Scholar

    XUE Ming, WENG Yibin, LIU Guangquan, et al. Current status on fugitive methane emission measurements and inventory during oil and gas production [J]. Climate Change Research, 2019, 15(2): 187-196. doi: 10.12006/j.issn.1673-1719.2018.118

    CrossRef Google Scholar

    [15] Jørgensen B B, Kasten S. Sulfur cycling and methane oxidation[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin-Heidelberg: Springer, 2006: 271-309.

    Google Scholar

    [16] Etiope G. Natural gas Seepage[M]. Cham: Springer, 2015.

    Google Scholar

    [17] Mendes S D. Microbial oxidation of marine hydrocarbons: quantifying rates of methane, ethane, propane, and butane consumption[D]. Doctor Dissertation of University of California, 2015.

    Google Scholar

    [18] Padilla C C, Bristow L A, Sarode N, et al. NC10 bacteria in marine oxygen minimum zones [J]. The ISME Journal, 2016, 10(8): 2067-2071. doi: 10.1038/ismej.2015.262

    CrossRef Google Scholar

    [19] 段晓勇, 印萍, 刘金庆, 等. 中国东部近海现代沉积环境[J]. 海洋地质与第四纪地质, 2019, 39(2):14-20

    Google Scholar

    DUAN Xiaoyong, YIN Ping, LIU Jinqing, et al. Modern sedimentation environments in the coastal zone of East China [J]. Marine Geology & Quaternary Geology, 2019, 39(2): 14-20.

    Google Scholar

    [20] Svensen H, Planke S, Malthe-Sørenssen A, et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming [J]. Nature, 2004, 429(6991): 542-545. doi: 10.1038/nature02566

    CrossRef Google Scholar

    [21] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5):1-11

    Google Scholar

    WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 1-11.

    Google Scholar

    [22] Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: An overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. doi: 10.1016/j.jseaes.2018.09.021

    CrossRef Google Scholar

    [23] 曾志刚, 陈祖兴, 张玉祥, 等. 海底热液活动的环境与产物[J]. 海洋科学, 2020, 44(7):143-155 doi: 10.11759/hykx20200316001

    CrossRef Google Scholar

    ZENG Zhigang, CHEN Zuxing, ZHANG Yuxiang, et al. Seafloor hydrothermal activities and their geological envi-ronments and products [J]. Marine Sciences, 2020, 44(7): 143-155. doi: 10.11759/hykx20200316001

    CrossRef Google Scholar

    [24] 贺行良, 谭丽菊, 段晓勇, 等. 杭州湾沉积物中硫酸盐-甲烷转换带内的碳循环[J]. 海洋地质与第四纪地质, 2020, 40(3):51-60

    Google Scholar

    HE Xinglianig, TAN Liju, DUAN Xiaoyong, et al. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay [J]. Marine Geology & Quaternary Geology, 2020, 40(3): 51-60.

    Google Scholar

    [25] Giovannelli D, D'errico G, Fiorentino F, et al. Diversity and distribution of prokaryotes within a shallow-water pockmark field [J]. Frontiers in Microbiology, 2016, 7: 941.

    Google Scholar

    [26] Grünke S, Felden J, Lichtschlag A, et al. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea) [J]. Geobiology, 2011, 9(4): 330-348. doi: 10.1111/j.1472-4669.2011.00281.x

    CrossRef Google Scholar

    [27] Felden J, Lichtschlag A, Wenzhöfer F, et al. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan) [J]. Biogeosciences, 2013, 10(5): 3269-3283. doi: 10.5194/bg-10-3269-2013

    CrossRef Google Scholar

    [28] Meng L, Jain S, Baker B J, et al. Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume [J]. Environmental Microbiology, 2014, 16(1): 60-71. doi: 10.1111/1462-2920.12182

    CrossRef Google Scholar

    [29] Talbot H M, Handley L, Spencer-Jones C L, et al. Variability in aerobic methane oxidation over the past 1.2 Myrs recorded in microbial biomarker signatures from Congo fan sediments [J]. Geochimica et Cosmochimica Acta, 2014, 133: 387-401. doi: 10.1016/j.gca.2014.02.035

    CrossRef Google Scholar

    [30] Røy H, Kallmeyer J, Adhikari R R, et al. Aerobic microbial respiration in 86-million-year-old deep-sea red clay [J]. Science, 2012, 336(6083): 922-925. doi: 10.1126/science.1219424

    CrossRef Google Scholar

    [31] Wasmund K, Kurtböke D I, Burns K A, et al. Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity [J]. FEMS Microbiology Ecology, 2009, 68(2): 142-151. doi: 10.1111/j.1574-6941.2009.00667.x

    CrossRef Google Scholar

    [32] Steinle L, Schmidt M, Bryant L, et al. Linked sediment and water-column methanotrophy at a man-made gas blowout in the North Sea: Implications for methane budgeting in seasonally stratified shallow seas [J]. Limnology and Oceanography, 2016, 61(S1): S367-S386. doi: 10.1002/lno.10388

    CrossRef Google Scholar

    [33] 吴能友, 孙治雷, 卢建国, 等. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质, 2019, 39(5):23-35

    Google Scholar

    WU Nengyou, SUN Zhilei, LU Jianguo, et al. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35.

    Google Scholar

    [34] Skennerton C T, Ward L M, Michel A, et al. Genomic reconstruction of an uncultured hydrothermal vent gammaproteobacterial methanotroph (family methylothermaceae) indicates multiple adaptations to oxygen limitation [J]. Frontiers in Microbiology, 2015, 6: 1425.

    Google Scholar

    [35] 郭莹莹, 陈坚, 尹希杰, 等. 九龙江河口表层水体及沉积物中甲烷的分布和环境控制因素研究[J]. 环境科学, 2012, 33(2):558-564

    Google Scholar

    GUO Yingying, CHEN Jian, YIN Xijie, et al. Spatial distribution of methane in surface water and sediment of Jiulongjiang estuary and the effect environment factors of it [J]. Chinese Journal of Environmental Science, 2012, 33(2): 558-564.

    Google Scholar

    [36] Horita J, Berndt M E, et al. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions [J]. Science, 1999, 285(5430): 1055-1057. doi: 10.1126/science.285.5430.1055

    CrossRef Google Scholar

    [37] 赵广涛, 徐翠玲, 张晓东, 等. 海底沉积物-水界面溶解甲烷渗漏通量原位观测研究进展[J]. 中国海洋大学学报, 2014, 44(12):73-81

    Google Scholar

    ZHAO Guangtao, XU Cuiling, ZHANG Xiaodong, et al. Research progress in in-situ observations of dissolved methane seepage fluxed across the water-sediment interface [J]. Periodical of Ocean University of China, 2014, 44(12): 73-81.

    Google Scholar

    [38] Sommer S, Pfannkuche O, Linke P, et al. Efficiency of the benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge [J]. Global Biogeochemical Cycles, 2006, 20(2): GB2019.

    Google Scholar

    [39] 陈多福, 冯东, 陈光谦, 等. 海底天然气渗漏系统演化特征及对形成水合物的影响[J]. 沉积学报, 2005, 23(2):323-328 doi: 10.3969/j.issn.1000-0550.2005.02.020

    CrossRef Google Scholar

    CHEN Duofu, FENG Dong, CHEN Guangqian, et al. Evolution of marine gas venting system and impact on gas hydrate crystallization [J]. Acta Sedimentologica Sinica, 2005, 23(2): 323-328. doi: 10.3969/j.issn.1000-0550.2005.02.020

    CrossRef Google Scholar

    [40] Roberts H H. Fluid and gas expulsion on the northern gulf of mexico continental slope: mud-prone to mineral-prone responses[M]//Paull C K, Dillon W P. Natural Gas Hydrates: Occurrence, Distribution, and Detection: Occurrence, Distribution, and Detection. Washington, DC, USA: American Geophysical Union, 2013.

    Google Scholar

    [41] Bowman J P. The methanotrophs-the families methylococcaceae and methylocystaceae[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 266-289.

    Google Scholar

    [42] Yu W J, Lee J W, Nguyen N L, et al. The characteristics and comparative analysis of methanotrophs reveal genomic insights into Methylomicrobium sp. enriched from marine sediments [J]. Systematic and Applied Microbiology, 2018, 41(5): 415-426. doi: 10.1016/j.syapm.2018.05.004

    CrossRef Google Scholar

    [43] Ruff S E, Felden J, Gruber-Vodicka H R, et al. In situ development of a methanotrophic microbiome in deep-sea sediments [J]. The ISME Journal, 2019, 13(1): 197-213. doi: 10.1038/s41396-018-0263-1

    CrossRef Google Scholar

    [44] Vekeman B, Kerckhof F M, Cremers G, et al. New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase [J]. Environmental Microbiology, 2016, 18(12): 4523-4536. doi: 10.1111/1462-2920.13485

    CrossRef Google Scholar

    [45] Hakobyan A, Liesack W. Unexpected metabolic versatility among type II methanotrophs in the Alphaproteobacteria [J]. Biological Chemistry, 2020, 401(12): 1469-1477. doi: 10.1515/hsz-2020-0200

    CrossRef Google Scholar

    [46] Martins P D, Jong A D, Lenstra W K, et al. Enrichment of novel Verrucomicrobia, Bacteroidetes and Krumholzibacteria in an oxygen-limited, methane- and iron-fed bioreactor inoculated with Bothnian Sea sediments[Z]. 2020, doi: 10.1101/2020.09.22.307553.

    Google Scholar

    [47] Tavormina P L, Ussler W, Joye S B, et al. Distributions of putative aerobic methanotrophs in diverse pelagic marine environments [J]. The ISME Journal, 2010, 4(5): 700-710. doi: 10.1038/ismej.2009.155

    CrossRef Google Scholar

    [48] Takeuchi M, Katayama T, Yamagishi T, et al. Methyloceanibacter caenitepidi gen. nov., sp. nov., a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent [J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(2): 462-468.

    Google Scholar

    [49] Crespo-Medina M, Meile C D, Hunter K S, et al. The rise and fall of methanotrophy following a deepwater oil-well blowout [J]. Nature Geoscience, 2014, 7(6): 423-427. doi: 10.1038/ngeo2156

    CrossRef Google Scholar

    [50] Kessler J D, Valentine D L, Redmond M C, et al. A persistent oxygen anomaly reveals the fate of spilled methane in the deep gulf of Mexico [J]. Science, 2011, 331(6015): 312-315. doi: 10.1126/science.1199697

    CrossRef Google Scholar

    [51] Zhang Y, Maignien L, Zhao X X, et al. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor [J]. BMC Microbiology, 2011, 11: 137. doi: 10.1186/1471-2180-11-137

    CrossRef Google Scholar

    [52] Bussmann I, Matousu A, Osudar R, et al. Assessment of the radio 3H-CH4 tracer technique to measure aerobic methane oxidation in the water column [J]. Limnology and Oceanography: Methods, 2015, 13(6): 312-327. doi: 10.1002/lom3.10027

    CrossRef Google Scholar

    [53] Li J, Liu C L, He X L, et al. Aerobic microbial oxidation of hydrocarbon gases: Implications for oil and gas exploration [J]. Marine and Petroleum Geology, 2019, 103: 76-86. doi: 10.1016/j.marpetgeo.2019.02.013

    CrossRef Google Scholar

    [54] Lopes F, Viollier E, Thiam A, et al. Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France) [J]. Applied Geochemistry, 2011, 26(12): 1919-1932. doi: 10.1016/j.apgeochem.2011.06.021

    CrossRef Google Scholar

    [55] Yao Y J, Su Y, Wu Y, et al. An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation [J]. Journal of Hazardous Materials, 2015, 283: 871-879. doi: 10.1016/j.jhazmat.2014.10.035

    CrossRef Google Scholar

    [56] Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    CrossRef Google Scholar

    [57] Heintz M B, Mau S, Valentine D L. Physical control on methanotrophic potential in waters of the Santa Monica Basin, Southern California [J]. Limnology and Oceanography, 2012, 57(2): 420-432. doi: 10.4319/lo.2012.57.2.0420

    CrossRef Google Scholar

    [58] Felden J, Wenzhöfer F, Feseker T, et al. Transport and consumption of oxygen and methane in different habitats of the Håkon Mosby Mud Volcano (HMMV) [J]. Limnology and Oceanography, 2010, 55(6): 2366-2380. doi: 10.4319/lo.2010.55.6.2366

    CrossRef Google Scholar

    [59] Graves C A, Steinle L, Rehder G, et al. Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard [J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6185-6201. doi: 10.1002/2015JC011084

    CrossRef Google Scholar

    [60] Valentine D L, Kessler J D, Redmond M C, et al. Propane respiration jump-starts microbial response to a deep oil spill [J]. Science, 2010, 330(6001): 208-211. doi: 10.1126/science.1196830

    CrossRef Google Scholar

    [61] Mau S, Heintz M B, Valentine D L. Quantification of CH4 loss and transport in dissolved plumes of the Santa Barbara Channel, California [J]. Continental Shelf Research, 2012, 32: 110-120. doi: 10.1016/j.csr.2011.10.016

    CrossRef Google Scholar

    [62] Mau S, Blees J, Helmke E, et al. Vertical distribution of methane oxidation and methanotrophic response to elevated methane concentrations in stratified waters of the Arctic fjord Storfjorden (Svalbard, Norway) [J]. Biogeosciences, 2013, 10(10): 6267-6278. doi: 10.5194/bg-10-6267-2013

    CrossRef Google Scholar

    [63] 张瑞林, 任学清. 不同压力及氧环境条件下微生物降解煤层瓦斯实验研究[J]. 煤矿安全, 2014, 45(11):1-4

    Google Scholar

    ZHANG Ruilin, REN Xueqing. Experimental study on coal seam gas degradation by microorganism under different pressure and oxygen environment conditions [J]. Safety in Coal Mines, 2014, 45(11): 1-4.

    Google Scholar

    [64] Case D H, Ijiri A, Morono Y, et al. Aerobic and anaerobic methanotrophic communities associated with methane hydrates exposed on the seafloor: a high-pressure sampling and stable isotope-incubation experiment [J]. Frontiers in Microbiology, 2017, 8: 2569. doi: 10.3389/fmicb.2017.02569

    CrossRef Google Scholar

    [65] 张鑫. 深海环境及深海沉积物拉曼光谱原位定量探测技术研究: 深海沉积物孔隙水及天然气水合物原位定量探测新方法[D]. 中国海洋大学博士学位论文, 2009.

    Google Scholar

    ZHANG Xin. Quantitative applications of Raman technique for deep-sea environment and sediment detection: New tecinque for deep-sea sediment pore water and methane hydrates in situ detection[D]. Doctor Dissertation of Ocean University of China, 2009.

    Google Scholar

    [66] 马立杰, 崔迎春. 南海中部和北部上层海水中溶存甲烷浓度及海气交换通量[J]. 热带海洋学报, 2013, 32(2):94-101

    Google Scholar

    MA Lijie, CUI Yingchun. Dissolved methane concentration and sea-to-air transfer flux of dissolved methane in the upper seawater of the central and northern South China Sea [J]. Journal of Tropical Oceanography, 2013, 32(2): 94-101.

    Google Scholar

    [67] Zhang Y, Henriet J P, Bursens J, et al. Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor [J]. Bioresource Technology, 2010, 101(9): 3132-3138. doi: 10.1016/j.biortech.2009.11.103

    CrossRef Google Scholar

    [68] Wegener G, Boetius A. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes [J]. Biogeosciences, 2009, 6(5): 867-876. doi: 10.5194/bg-6-867-2009

    CrossRef Google Scholar

    [69] Valentine D L. Emerging topics in marine methane biogeochemistry [J]. Annual Review of Marine Science, 2011, 3: 147-171. doi: 10.1146/annurev-marine-120709-142734

    CrossRef Google Scholar

    [70] Chan E W, Shiller A M, Joung D J, et al. Investigations of aerobic methane oxidation in two marine seep environments: Part 2—isotopic kinetics [J]. Journal of Geophysical Research: Oceans, 2019, 124(11): 8392-8399. doi: 10.1029/2019JC015603

    CrossRef Google Scholar

    [71] Kim I T, Lee Y E, Yoo Y S, et al. Development of a combined aerobic–anoxic and methane oxidation bioreactor system using mixed methanotrophs and biogas for wastewater denitrification [J]. Water, 2019, 11(7): 1377. doi: 10.3390/w11071377

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(3269) PDF downloads(66) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint