2021 Vol. 41, No. 1
Article Contents

WEN Hanfeng, ZHAO Nanyu, LIU Chengcheng, ZHOU Pengchao, WANG Guozhen, YAN Hong. High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 1-13. doi: 10.16562/j.cnki.0256-1492.2020101101
Citation: WEN Hanfeng, ZHAO Nanyu, LIU Chengcheng, ZHOU Pengchao, WANG Guozhen, YAN Hong. High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 1-13. doi: 10.16562/j.cnki.0256-1492.2020101101

High-resolution oxygen isotope records of Tridacna gigas from Palau, Western Pacific and its climatic and environmental implications

More Information
  • Tridacna gigas is the largest marine bivalve, and its hard and dense aragonite shells usually have annual and daily growth lines, which have been demonstrated to be an ideal material for high-resolution paleoclimate research. The oxygen isotope has been widely used in Tridacna paleoclimate studies. However, the oxygen isotope of Tridacna shells must be accurately calibrated by modern geochemical process before paleoclimate reconstructions. Palau is located in the northwestern edge of the Western Pacific Warm Pool. Long-lived Tridacna spp. is a common species in the coral reefs of Palau Islands, which may provide abundant materials for paleoclimate reconstructions. In this study, we present a high-resolution oxygen isotope profile from the inner shell of a modern living T. gigas specimen PL-1 from Palau. The high-resolution chronology of the oxygen isotope profile is determined by the clear daily growth layers in the inner shell. The result suggests that the δ18Oc profile of the T. gigas shell has no obvious trend, indicating that the vital effects have no significant influence on the oxygen isotope of shell. Combining with the instrumental data, we found that the ENSO activities in the tropical Pacific had impacts on the regional hydro-climate changes of Palau, and left some fingerprint in the oxygen isotope of Tridacna shell. This study indicates that the daily growth layer and the oxygen isotope in the inner shell of Tridacna from Palau have the potential for high-resolution paleoclimate research.

  • 加载中
  • [1] Andreasson F P, Schmitz B. Temperature seasonality in the early middle Eocene North Atlantic region: Evidence from stable isotope profiles of marine gastropod shells [J]. GSA Bulletin, 2000, 112(4): 628-640. doi: 10.1130/0016-7606(2000)112<628:TSITEM>2.0.CO;2

    CrossRef Google Scholar

    [2] Yan H, Sun L G, Shao D, et al. Seawater temperature seasonality in the South China Sea during the late Holocene derived from high-resolution Sr/Ca ratios of Tridacna gigas [J]. Quaternary Research, 2015, 83(2): 298-306. doi: 10.1016/j.yqres.2014.12.001

    CrossRef Google Scholar

    [3] 林而达, 许吟隆, 蒋金荷, 等. 气候变化国家评估报告(Ⅱ): 气候变化的影响与适应[J]. 气候变化研究进展, 2006, 2(2):51-56 doi: 10.3969/j.issn.1673-1719.2006.02.001

    CrossRef Google Scholar

    LIN Erda, XU Yinlong, JIANG Jinhe, et al. National Assessment Report of Climate Change (Ⅱ): Climate change impacts and adaptation [J]. Advances in Climate Change Research, 2006, 2(2): 51-56. doi: 10.3969/j.issn.1673-1719.2006.02.001

    CrossRef Google Scholar

    [4] Collins M, An S I, Cai W J, et al. The impact of global warming on the tropical Pacific Ocean and El Niño [J]. Nature Geoscience, 2010, 3(6): 391-397. doi: 10.1038/ngeo868

    CrossRef Google Scholar

    [5] Guo Y P, Tan Z M. The Hadley circulation regime change: Combined effect of the Western Pacific warming and increased ENSO amplitude [J]. Journal of Climate, 2018, 31(23): 9739-9751. doi: 10.1175/JCLI-D-18-0306.1

    CrossRef Google Scholar

    [6] Hongo C, Kurihara H, Golbuu Y. Coral boulders on Melekeok reef in the Palau Islands: An indicator of wave activity associated with tropical cyclones [J]. Marine Geology, 2018, 399: 14-22. doi: 10.1016/j.margeo.2018.02.004

    CrossRef Google Scholar

    [7] Schöne B R, Castro A D F, Fiebig J, et al. Sea surface water temperatures over the period 1884-1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4): 215-232. doi: 10.1016/j.palaeo.2004.05.024

    CrossRef Google Scholar

    [8] Patterson W P, Dietrich K A, Holmden C, et al. Two millennia of North Atlantic seasonality and implications for Norse colonies [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12): 5306-5310. doi: 10.1073/pnas.0902522107

    CrossRef Google Scholar

    [9] Yamanashi J, Takayanagi H, Isaji A, et al. Carbon and oxygen isotope records from Tridacna derasa shells: toward establishing a reliable proxy for sea surface environments [J]. PLoS ONE, 2016, 11(6): e0157659. doi: 10.1371/journal.pone.0157659

    CrossRef Google Scholar

    [10] Xu J, Kuhnt W, Holbourn A, et al. Indo-Pacific warm pool variability during the Holocene and Last Glacial Maximum [J]. Paleoceanography, 2010, 25(4): PA4230.

    Google Scholar

    [11] 孙有斌, 郭飞. 中国黄土记录的季风快速变化[J]. 第四纪研究, 2017, 37(5):963-973 doi: 10.11928/j.issn.1001-7410.2017.05.04

    CrossRef Google Scholar

    SUN Youbin, GUO Fei. Rapid monsoon changes recorded by Chinese loess deposits [J]. Quaternary Sciences, 2017, 37(5): 963-973. doi: 10.11928/j.issn.1001-7410.2017.05.04

    CrossRef Google Scholar

    [12] Greenland Ice-core Project (GRIP) Members. Climate instability during the last interglacial period recorded in the GRIP ice core [J]. Nature, 1993, 364(6434): 203-207. doi: 10.1038/364203a0

    CrossRef Google Scholar

    [13] Neukom R, Steiger N, Gómez-Navarro J J, et al. No evidence for globally coherent warm and cold periods over the preindustrial Common Era [J]. Nature, 2019, 571(7766): 550-554. doi: 10.1038/s41586-019-1401-2

    CrossRef Google Scholar

    [14] Jones D S, Williams D F, Romanek C S. Life history of symbiont-bearing giant clams from stable isotope profiles [J]. Science, 1986, 231(4733): 46-48. doi: 10.1126/science.231.4733.46

    CrossRef Google Scholar

    [15] Rosewater J. The Family Tridacnidae in the Indo-Pacific[M]. The Philippines: Department of Mollusks, Academy of Natural Sciences of Philadelphia, 1965: 374-396.

    Google Scholar

    [16] Jameson S C. Early life history of the giant clams Tridacna crocea Lamarck, Tridacna maxima (Roding), and Hippopus hippopus (Linnaeus) [J]. Pacific Science, 1976, 30(3): 219-233.

    Google Scholar

    [17] Aharon P, Chappell J, Compston W. Stable isotope and sea-level data from New Guinea supports Antarctic ice-surge theory of ice ages [J]. Nature, 1980, 283(5748): 649-651. doi: 10.1038/283649a0

    CrossRef Google Scholar

    [18] Driscoll R E. PaleoENSO reconstructions of the Holocene and Last Glacial Period[D]. Doctor Dissertation of University of Edinburgh, 2015.

    Google Scholar

    [19] Gannon M E, Pérez-Huerta A, Aharon P, et al. A biomineralization study of the Indo-Pacific giant clam Tridacna gigas [J]. Coral Reefs, 2017, 36(2): 503-517. doi: 10.1007/s00338-016-1538-5

    CrossRef Google Scholar

    [20] 晏宏, 刘成程. 砗磲地球化学与古气候学研究进展[J]. 第四纪研究, 2017, 37(5):1077-1090 doi: 10.11928/j.issn.1001-7410.2017.05.15

    CrossRef Google Scholar

    YAN Hong, LIU Chengcheng. Review on Tridacna geochemistry and paleoclimate research [J]. Quaternary Sciences, 2017, 37(5): 1077-1090. doi: 10.11928/j.issn.1001-7410.2017.05.15

    CrossRef Google Scholar

    [21] 梅衍俊, 邵达, 刘文齐, 等. 南海砗磲壳体成分及生物有机特征分析[J]. 中国科学技术大学学报, 2018, 48(7):550-559 doi: 10.3969/j.issn.0253-2778.2018.07.005

    CrossRef Google Scholar

    MEI Yanjun, SHAO Da, LIU Wenqi, et al. Analysis of the components and biological organic characteristics of Tridacna spp. shells from South China Sea [J]. Journal of University of Science and Technology of China, 2018, 48(7): 550-559. doi: 10.3969/j.issn.0253-2778.2018.07.005

    CrossRef Google Scholar

    [22] 晏宏, 邵达, 王玉宏, 等. 南海西沙大砗磲高分辨率Sr/Ca温度计及其意义[J]. 地球环境学报, 2011, 2(2):381-386

    Google Scholar

    YAN Hong, SHAO Da, WANG Yuhong, et al. High resolution Sr/Ca profile of Tridacna gigas from Xisha Islands of South China Sea and its potential application on sea surface temperature reconstruction [J]. Journal of Earth Environment, 2011, 2(2): 381-386.

    Google Scholar

    [23] Aharon P, Chappell J. Carbon and oxygen isotope probes of reef environment histories[M]//Barnes D J. Perspectives on Coral Reefs. Townsville, Australia: Brian Clouston, 1983: 1-15.

    Google Scholar

    [24] Yoshimura T, Tamenori Y, Suzuki A, et al. Element profile and chemical environment of sulfur in a giant clam shell: Insights from μ-XRF and X-ray absorption near-edge structure [J]. Chemical Geology, 2013, 352: 170-175. doi: 10.1016/j.chemgeo.2013.05.035

    CrossRef Google Scholar

    [25] Aubert A, Lazareth C E, Cabioch G, et al. The tropical giant clam Hippopus hippopus shell, a new archive of environmental conditions as revealed by sclerochronological and δ18O profiles [J]. Coral Reefs, 2009, 28(4): 989-998. doi: 10.1007/s00338-009-0538-0

    CrossRef Google Scholar

    [26] Warter V, Erez J, Müller W. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 496: 32-47. doi: 10.1016/j.palaeo.2017.12.038

    CrossRef Google Scholar

    [27] Watanabe T, Oba T. Daily reconstruction of water temperature from oxygen isotopic ratios of a modern Tridacna shell using a freezing microtome sampling technique [J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20667-20674. doi: 10.1029/1999JC900097

    CrossRef Google Scholar

    [28] Duprey N, Lazareth C E, Dupouy C, et al. Calibration of seawater temperature and δ18Oseawater signals in Tridacna maxima’s δ18Oshell record based on in situ data [J]. Coral Reefs, 2015, 34(2): 437-450. doi: 10.1007/s00338-014-1245-z

    CrossRef Google Scholar

    [29] Komagoe T, Watanabe T, Shirai K, et al. Geochemical and microstructural signals in giant clam Tridacna maxima recorded typhoon events at Okinotori Island, Japan [J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(5): 1460-1474. doi: 10.1029/2017JG004082

    CrossRef Google Scholar

    [30] Bayer S, Beierlein L, Morán G A, et al. Late Quaternary climatic variability in northern Patagonia, Argentina, based on δ18O of modern and fossil shells of Amiantis purpurata (Bivalvia, Veneridae) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110012. doi: 10.1016/j.palaeo.2020.110012

    CrossRef Google Scholar

    [31] Watanabe T, Suzuki A, Kawahata H, et al. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: physiological and paleoclimatic implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3-4): 343-354. doi: 10.1016/S0031-0182(04)00358-X

    CrossRef Google Scholar

    [32] Ayling B F, Chappell J, Gagan M K, et al. ENSO variability during MIS 11 (424-374 ka) from Tridacna gigas at Huon Peninsula, Papua New Guinea [J]. Earth and Planetary Science Letters, 2015, 431: 236-246. doi: 10.1016/j.jpgl.2015.09.037

    CrossRef Google Scholar

    [33] Yan H, Shao D, Wang Y H, et al. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: A new high-resolution SST proxy [J]. Geochimica et Cosmochimica Acta, 2013, 112: 52-65. doi: 10.1016/j.gca.2013.03.007

    CrossRef Google Scholar

    [34] Hori M, Sano Y, Ishida A, et al. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell [J]. Scientific Reports, 2015, 5: 8734. doi: 10.1038/srep08734

    CrossRef Google Scholar

    [35] Yan H, Liu C C, An Z S, et al. Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7038-7043. doi: 10.1073/pnas.1916784117

    CrossRef Google Scholar

    [36] Schwartzmann C, Durrieu G, Sow M, et al. In situ giant clam growth rate behavior in relation to temperature: A one-year coupled study of high-frequency noninvasive valvometry and sclerochronology [J]. Limnology and Oceanography, 2011, 56(5): 1940-1951. doi: 10.4319/lo.2011.56.5.1940

    CrossRef Google Scholar

    [37] Aharon P, Chappell J. Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105 years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 56(3-4): 337-379. doi: 10.1016/0031-0182(86)90101-X

    CrossRef Google Scholar

    [38] Grossman E L, Ku T L. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects [J]. Chemical Geology, 1986, 59: 59-74. doi: 10.1016/0168-9622(86)90057-6

    CrossRef Google Scholar

    [39] Welsh K, Elliot M, Tudhope A, et al. Giant bivalves (Tridacna gigas) as recorders of ENSO variability [J]. Earth and Planetary Science Letters, 2011, 307(3-4): 266-270. doi: 10.1016/j.jpgl.2011.05.032

    CrossRef Google Scholar

    [40] Arias-Ruiz C, Elliot M, Bézos A, et al. Geochemical fingerprints of climate variation and the extreme La Niña 2010-11 as recorded in a Tridacna squamosa shell from Sulawesi, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 487: 216-228. doi: 10.1016/j.palaeo.2017.08.037

    CrossRef Google Scholar

    [41] Duprey N, Galipaud J C, Cabioch G, et al. Isotopic records from archeological giant clams reveal a variable climate during the southwestern Pacific colonization ca. 3.0 ka BP [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 404: 97-108. doi: 10.1016/j.palaeo.2014.04.002

    CrossRef Google Scholar

    [42] Yan H, Liu C C, Zhang W C, et al. ENSO variability around 2000 years ago recorded by Tridacna gigas δ18O from the South China Sea [J]. Quaternary International, 2017, 452: 148-154. doi: 10.1016/j.quaint.2016.05.011

    CrossRef Google Scholar

    [43] Hu Y, Sun X M, Cheng H, et al. Evidence from giant-clam δ18O of intense El Ninõ-Southern Oscillation-related variability but reduced frequency 3700 years ago [J]. Climate of the Past, 2020, 16(2): 597-610. doi: 10.5194/cp-16-597-2020

    CrossRef Google Scholar

    [44] Conroy J L, Noone D, Cobb K M, et al. Paired stable isotopologues in precipitation and vapor: A case study of the amount effect within western tropical Pacific storms [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(7): 3290-3303. doi: 10.1002/2015JD023844

    CrossRef Google Scholar

    [45] Dansgaard W. Stable isotopes in precipitation [J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993

    CrossRef Google Scholar

    [46] Ma X L, Yan H, Fei H B, et al. A high-resolution δ18O record of modern Tridacna gigas bivalve and its paleoenvironmental implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 554: 109800. doi: 10.1016/j.palaeo.2020.109800

    CrossRef Google Scholar

    [47] Colin P L. Ocean Warming and the Reefs of Palau [J]. Oceanography, 2018, 31(2): 126-135.

    Google Scholar

    [48] Bruno J, Siddon C, Witman J, et al. El Niño related coral bleaching in Palau, Western Caroline Islands [J]. Coral Reefs, 2001, 20(2): 127-136. doi: 10.1007/s003380100151

    CrossRef Google Scholar

    [49] Martin L E, Dawson M N, Bell L J, et al. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific [J]. Biology Letters, 2006, 2(1): 144-147. doi: 10.1098/rsbl.2005.0382

    CrossRef Google Scholar

    [50] Colin P L. Marine Environments of Palau[M]. San Diego: Indo-Pacific Press, 2009: 15-25.

    Google Scholar

    [51] Golbuu Y, Bauman A, Kuartei J, et al. The state of coral reef ecosystems of Palau [J]. The state of coral reef ecosystems of the United States and Pacific freely associated states, 2005, 2005: 488-507.

    Google Scholar

    [52] Hardy J T, Hardy S A. Ecology of Tridacna in Palau [J]. Pacific Science, 1969, XXIII: 467-472.

    Google Scholar

    [53] Colin P L. Marine Environments of Palau[M]. San Diego: Indo-Pacific Press, 2009: 365-366.

    Google Scholar

    [54] Grottoli A G. Monthly resolved stable oxygen isotope record in a Palauan sclerosponge Acanthocheatetes wellsi for the period of 1977-2001[C]//Proceedings of the 10th International Coral Reef Symposium. Okinawa, Japan, 2006: 572-579.

    Google Scholar

    [55] Iijima H, Kayanne H, Morimoto M, et al. Interannual sea surface salinity changes in the western Pacific from 1954 to 2000 based on coral isotope analysis [J]. Geophysical Research Letters, 2005, 32(4): L04608.

    Google Scholar

    [56] Osborne M C, Dunbar R B, Mucciarone D A, et al. Regional calibration of coral-based climate reconstructions from Palau, West Pacific Warm Pool (WPWP) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386: 308-320. doi: 10.1016/j.palaeo.2013.06.001

    CrossRef Google Scholar

    [57] Wu H C, Grottoli A G. Stable oxygen isotope records of corals and a sclerosponge in the Western Pacific warm pool [J]. Coral Reefs, 2010, 29(2): 413-418. doi: 10.1007/s00338-009-0576-7

    CrossRef Google Scholar

    [58] Osborne M C, Dunbar R B, Mucciarone D A, et al. A 215-yr coral δ18O time series from Palau records dynamics of the West Pacific Warm Pool following the end of the Little Ice Age [J]. Coral Reefs, 2014, 33(3): 719-731. doi: 10.1007/s00338-014-1146-1

    CrossRef Google Scholar

    [59] Grottoli A G, Adkins J F, Panero W R, et al. Growth rates, stable oxygen isotopes (δ18O), and strontium (Sr/Ca) composition in two species of Pacific sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with δ18O calibration and application to paleoceanography [J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): C06008.

    Google Scholar

    [60] Pätzold J, Heinrichs J P, Wolschendorf K, et al. Correlation of stable oxygen isotope temperature record with light attenuation profiles in reef-dwelling Tridacna shells [J]. Coral Reefs, 1991, 10(2): 65-69. doi: 10.1007/BF00571825

    CrossRef Google Scholar

    [61] Jew N P, Dodrill T, Fitzpatrick S M. Evaluating the efficacy of the mollusc Tridacna crocea for reconstructing ancient sea-surface temperatures in the Rock Islands of Palau, Micronesia [J]. Archaeology in Oceania, 2019, 54(2): 107-119. doi: 10.1002/arco.5182

    CrossRef Google Scholar

    [62] Dodrill T N, Lassuy M G, Jew N P, et al. Stable Oxygen Isotope (δ18O) Analyses and Paleoenvironmental Reconstructions from Mollusks in Palau, Micronesia[C]//Proceedings of the 81st Annual Meeting of the Society for American Archaeology. Orlando, FL, 2016.

    Google Scholar

    [63] Maes C. Salinity variability in the equatorial Pacific Ocean during the 1993-98 period [J]. Geophysical Research Letters, 2000, 27(11): 1659-1662. doi: 10.1029/1999GL011261

    CrossRef Google Scholar

    [64] Barkley H C, Cohen A L. Skeletal records of community-level bleaching in Porites corals from Palau [J]. Coral Reefs, 2016, 35(4): 1407-1417. doi: 10.1007/s00338-016-1483-3

    CrossRef Google Scholar

    [65] Elliot M, Welsh K, Chilcott C, et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2): 132-142. doi: 10.1016/j.palaeo.2009.06.007

    CrossRef Google Scholar

    [66] Romanek C S, Grossman E L. Stable Isotope Profiles of Tridacna maxima as Environmental Indicators [J]. Palaios, 1989, 4(5): 402-413. doi: 10.2307/3514585

    CrossRef Google Scholar

    [67] Morimoto M, Abe O, Kayanne H, et al. Salinity records for the 1997-98 El Niño from Western Pacific corals [J]. Geophysical Research Letters, 2002, 29(11): 35-1-35-4.

    Google Scholar

    [68] Warter V, Müller W. Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis - A novel methodological approach towards improved sclerochemistry [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465: 362-375. doi: 10.1016/j.palaeo.2016.03.019

    CrossRef Google Scholar

    [69] Yan H, Wang Y H, Sun L G. High resolution oxygen isotope and grayscale records of a medieval fossil giant clam (Tridacna gigas) in the South China Sea: physiological and paleoclimatic implications [J]. Acta Oceanologica Sinica, 2014, 33(8): 18-25. doi: 10.1007/s13131-014-0399-4

    CrossRef Google Scholar

    [70] Romanek C S, Jones D S, Williams D F, et al. Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima [J]. Marine Biology, 1987, 94(3): 385-393. doi: 10.1007/BF00428244

    CrossRef Google Scholar

    [71] Fairbanks R G, Evans M N, Rubenstone J L, et al. Evaluating climate indices and their geochemical proxies measured in corals [J]. Coral Reefs, 1997, 16(5): S93-S100. doi: 10.1007/s003380050245

    CrossRef Google Scholar

    [72] 洪阿实, 洪鹰, 王庆春, 等. 1994年夏季南海东北部海水氧同位素分布特征[J]. 热带海洋, 1997, 16(2):82-90

    Google Scholar

    HONG Ashi, HONG Ying, WANG Qingchun, et al. Distributive characteristics of O isotope of the northeastern South China Sea in the summer of 1994 [J]. Tropic Oceanology, 1997, 16(2): 82-90.

    Google Scholar

    [73] Diaz H F, Hoerling M P, Eischeid J K. ENSO variability, teleconnections and climate change [J]. International Journal of Climatology, 2001, 21(15): 1845-1862. doi: 10.1002/joc.631

    CrossRef Google Scholar

    [74] Bellenger H, Guilyardi E, Leloup J, et al. ENSO representation in climate models: from CMIP3 to CMIP5 [J]. Climate Dynamics, 2014, 42(7-8): 1999-2018. doi: 10.1007/s00382-013-1783-z

    CrossRef Google Scholar

    [75] Versteegh E A A, Vonhof H B, Troelstra S R, et al. Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope shell chemistry [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08022.

    Google Scholar

    [76] Woodroffe C D, Beech M R, Gagan M K. Mid-late Holocene El Niño variability in the equatorial Pacific from coral microatolls [J]. Geophysical Research Letters, 2003, 30(7): 1358.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(2480) PDF downloads(139) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint