2021 Vol. 41, No. 3
Article Contents

LI Qiang, YANG Tianbang, ZHUANG Chang, DENG Xiguang, WANG Haifeng, YU Miao. Geochemical characteristics of the sediments at site G16 of the Makran accretionary wedge, the northern Arabian Sea, and their implications for gas hydrates[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 161-169. doi: 10.16562/j.cnki.0256-1492.2020091802
Citation: LI Qiang, YANG Tianbang, ZHUANG Chang, DENG Xiguang, WANG Haifeng, YU Miao. Geochemical characteristics of the sediments at site G16 of the Makran accretionary wedge, the northern Arabian Sea, and their implications for gas hydrates[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 161-169. doi: 10.16562/j.cnki.0256-1492.2020091802

Geochemical characteristics of the sediments at site G16 of the Makran accretionary wedge, the northern Arabian Sea, and their implications for gas hydrates

More Information
  • The Makran accretionary wedge in the northern Arabian Sea is one of the important areas with large gas hydrate potential. Sediment, headspace gas and pore water samples were collected from the sediment core at site G16 PC of the area. Comprehensive studies are conducted on organic carbon, molybdenum, methane concentrations in headspace gas, and total alkalinity, anions and cations in pore water and detrital sediments. It is revealed that concentrations of Mg2+ and Ca2+ decrease clearly with the increasing in depth, while the total alkalinity and the Mg2+/Ca2+ ratio increases sharply. Around the sulfate methane interface (SMI), the concentration of dissolved sulfate (SO42−) decreases linearly to 0.31 mmol/L, with a sharp increase in methane to 784 µmol/L. At the same time, the content of pyrite in sediments reaches its maximum together with a Mo peak. Combined with changing characteristics of total alkalinity and concentrations of Mg2+, Ca2+ and organic carbon, the concentration of sulfate decreased linearly and the high sulfate gradients suggest that there is strong anaerobic methane oxidation (AOM) occurred at the SMI, which is estimated in a depth of 4.62 mbsf. A coupling phenomenon exists between geochemical anomaly characteristics of sediment samples and pore water samples from the sediment core and the content of authigenic pyrite, which strongly indicate that gas hydrate reservoirs may occur in the deeper layer of the study area.

  • 加载中
  • [1] 程聪, 姜涛, 匡增桂, 等. 天然气水合物系统特征及其对我国水合物勘查的启示[J]. 地质科技情报, 2019, 38(4):30-40

    Google Scholar

    CHENG Cong, JIANG Tao, KUANG Zenggui, et al. Characteristics of gas hydrate system and its enlightenment to gas hydrate exploration in China [J]. Geological Science and Technology Information, 2019, 38(4): 30-40.

    Google Scholar

    [2] 宋科余, 龙涛, 段红梅, 等. 未来我国气体能源发展动向研究[J]. 地球学报, 2020, 42(2):187-195

    Google Scholar

    SONG Keyu, LONG Tao, DUAN Hongmei, et al. Research on the development trend of China’s gas energy in the future [J]. Acta Geoscientica Sinica, 2020, 42(2): 187-195.

    Google Scholar

    [3] 王健, 邱文弦, 赵俐红. 天然气水合物发育的构造背景分析[J]. 地质科技情报, 2010, 29(2):100-106 doi: 10.3969/j.issn.1000-7849.2010.02.018

    CrossRef Google Scholar

    WANG Jian, QIU Wenxian, ZHAO Lihong. Tectonic settings analysis of gas hydrate deposits development [J]. Geological Science and Technology Information, 2010, 29(2): 100-106. doi: 10.3969/j.issn.1000-7849.2010.02.018

    CrossRef Google Scholar

    [4] 谢蕾, 王家生, 吴能友, 等. 南海北部神狐海域浅表层沉积物中自生黄铁矿及其泥火山指示意义[J]. 中国科学: 地球科学, 2013, 56(4):541-548 doi: 10.1007/s11430-012-4511-3

    CrossRef Google Scholar

    XIE Lei, WANG Jiasheng, WU Nengyou, et al. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea: Implications for a possible mud volcano environment [J]. Science China Earth Sciences, 2013, 56(4): 541-548. doi: 10.1007/s11430-012-4511-3

    CrossRef Google Scholar

    [5] 苏明, 杨睿, 吴能友, 等. 南海北部陆坡区神狐海域构造特征及对水合物的控制[J]. 地质学报, 2014, 88(3):318-326

    Google Scholar

    SU Ming, YANG Rui, WU Nengyou, et al. Structural characteristics in the Shenhu area, northern continental slope of South China Sea, and their influences on gas hydrate [J]. Acta Geologica Sinica, 2014, 88(3): 318-326.

    Google Scholar

    [6] 张毅, 何丽娟, 徐行, 等. 南海北部神狐海域甲烷水合物BHSZ与BSR的比较研究[J]. 地球物理学进展, 2009, 24(1):183-194

    Google Scholar

    ZHANG Yi, HE Lijuan, XU Xing, et al. The disagreement between BSRs and the base of methane hydrate stability zones in the Shenhu area north of the South China Sea [J]. Progress in Geophysics, 2009, 24(1): 183-194.

    Google Scholar

    [7] 张美, 孙晓明, 芦阳, 等. 南海台西南盆地自生管状黄铁矿矿物学特征及其对天然气水合物的示踪意义[J]. 矿床地质, 2011, 30(4):725-734

    Google Scholar

    ZHANG Mei, SUN Xiaoming, LU Yang, et al. Mineralogy of authigenic tube pyrite from the Southwest Taiwan Basin of South China Sea and its tracing significance for gas hydrates [J]. Mineral Deposits, 2011, 30(4): 725-734.

    Google Scholar

    [8] 张汉泉, 吴庐山, 张锦炜. 海底可视技术在天然气水合物勘查中的应用[J]. 地质通报, 2005, 24(2):185-188

    Google Scholar

    ZHANG Hanquan, WU Lushan, ZHANG Jinwei. Application of the sea-floor visualization technique in gas hydrate exploration [J]. Geological Bulletin of China, 2005, 24(2): 185-188.

    Google Scholar

    [9] 吴庐山, 杨胜雄, 梁金强, 等. 南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J]. 现代地质, 2010, 24(3):534-544

    Google Scholar

    WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al. Geochemical characteristics of sediments at site HQ-48 PC in Qiongdongnan area, the north of the South China Sea, and their implication for gas hydrates [J]. Geoscience, 2010, 24(3): 534-544.

    Google Scholar

    [10] 龚建明, 廖晶, 张莉, 等. 印度洋北部马克兰增生楔泥火山分布及主控因素探讨[J]. 现代地质, 2018, 32(5):1025-1030

    Google Scholar

    GONG Jianming, LIAO Jing, ZHANG Li, et al. Discussion on the distribution and main controlling factors of mud volcanoes in Makran accretionary wedge, Northern Indian Ocean [J]. Geoscience, 2018, 32(5): 1025-1030.

    Google Scholar

    [11] 杨金秀, 宋朋霖, 何巍巍, 等. 尼日尔三角洲前缘挤压带的古今BSRs分布特征[J]. 石油与天然气地质, 2019, 40(6):1295-1307 doi: 10.11743/ogg20190613

    CrossRef Google Scholar

    YANG Jinxiu, SONG Penglin, HE Weiwei, et al. Distribution pattern of paleo and present BSRs in the toe-thrust belt of Niger Delta front [J]. Oil & Gas Geology, 2019, 40(6): 1295-1307. doi: 10.11743/ogg20190613

    CrossRef Google Scholar

    [12] 张美, 陆红锋, 邬黛黛, 等. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示[J]. 海洋地质与第四纪地质, 2017, 37(6):178-188

    Google Scholar

    ZHANG Mei, LU Hongfeng, WU Daidai, et al. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(6): 178-188.

    Google Scholar

    [13] 赵洁, 王家生, 岑越, 等. 南海东北部GMGS2-16站位自生矿物特征及对水合物藏演化的指示意义[J]. 海洋地质与第四纪地质, 2018, 38(5):144-155

    Google Scholar

    ZHAO Jie, WANG Jiasheng, CEN Yue, et al. Authigenic minerals at site GMGS2-16 of northeastern South China Sea and its implications for gas hydrate evolution [J]. Marine Geology & Quaternary Geology, 2018, 38(5): 144-155.

    Google Scholar

    [14] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    Google Scholar

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea [J]. Geochimica, 2020, 49(1): 108-118.

    Google Scholar

    [15] 蒲晓强, 钟少军, 于雯泉, 等. 南海北部陆坡NH-1孔沉积物中自生硫化物及其硫同位素对深部甲烷和水合物存在的指示[J]. 科学通报, 2007, 52(3):401-407 doi: 10.1007/s11434-007-0043-1

    CrossRef Google Scholar

    PU Xiaoqiang, ZHONG Shaojun, YU Wenquan, et al. Authigenic sulfide minerals and their sulfur isotopes in sediments of the northern continental slope of the South China Sea and their implications for methane flux and gas hydrate formation [J]. Chinese Science Bulletin, 2007, 52(3): 401-407. doi: 10.1007/s11434-007-0043-1

    CrossRef Google Scholar

    [16] 程俊, 王淑红, 黄怡, 等. 天然气水合物赋存区甲烷渗漏活动的地球化学响应特征[J]. 海洋科学, 2019, 43(5):110-122

    Google Scholar

    CHENG Jun, WANG Shuhong, HUANG Yi, et al. Geochemical response characteristics of methane seepage activities in gas hydrate zones [J]. Marine Sciences, 2019, 43(5): 110-122.

    Google Scholar

    [17] 杨涛, 蒋少涌, 杨竞红, 等. 孔隙水中NH4+和HPO42-浓度异常: 一种潜在的天然气水合物地球化学勘查新指标[J]. 现代地质, 2005, 19(1):55-60

    Google Scholar

    YANG Tao, JIANG Shaoyong, YANG Jinghong, et al. Anomaly of ammonia and phosphate concentration in pore waters: a potential geochemical indicator for prospecting marine gas hydrate [J]. Geoscience, 2005, 19(1): 55-60.

    Google Scholar

    [18] 杨涛, 蒋少涌, 葛璐, 等. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 科学通报, 2010, 55(8):752-760 doi: 10.1007/s11434-009-0312-2

    CrossRef Google Scholar

    YANG Tao, JIANG Shaoyong, GE Lu, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence [J]. Chinese Science Bulletin, 2010, 55(8): 752-760. doi: 10.1007/s11434-009-0312-2

    CrossRef Google Scholar

    [19] 丛晓荣, 曹运诚, 苏正, 等. 南海北部东沙海域浅层沉积物孔隙水地球化学示踪深部水合物发育特征[J]. 地球化学, 2017, 46(3):292-300

    Google Scholar

    CONG Xiaorong, CAO Yuncheng, SU Zheng, et al. Gas hydrate occurrence in subsurface near the Dongsha area at northern South China Sea inferred from the pore water geochemistry of shallow sediments [J]. Geochimica, 2017, 46(3): 292-300.

    Google Scholar

    [20] 杨涛, 叶鸿, 赖亦君. 南海北部陆坡天然气水合物的沉积物孔隙水地球化学研究进展[J]. 海洋地质与第四纪地质, 2017, 37(5):48-58

    Google Scholar

    YANG Tao, YE Hong, LAI Yijun. Pore water geochemistry of the gas hydrate bearing zone on northern slope of the South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 48-58.

    Google Scholar

    [21] 赖亦君, 杨涛, 梁金强, 等. 南海北部陆坡珠江口盆地东南海域GMGS2-09井孔隙水地球化学特征及其对天然气水合物的指示意义[J]. 海洋地质与第四纪地质, 2018, 39(3):135-142

    Google Scholar

    LAI Yijun, YANG Tao, LIANG Jinqiang, et al. Geochemistry of sediment pore water from Well GMGS2-09 in the southeastern Pearl River Mouth Basin, South China Sea: An indication of gas hydrate occurrence [J]. Marine Geology & Quaternary Geology, 2018, 39(3): 135-142.

    Google Scholar

    [22] 王家生, Suess E. 天然气水合物伴生的沉积物碳、氧稳定同位素示踪[J]. 科学通报, 2002, 47(19):1659-1663

    Google Scholar

    WANG Jiasheng, Suess E. Indicators of δ13C and δ18O of gas hydrate-associated sediments [J]. Chinese Science Bulletin, 2002, 47(19): 1659-1663.

    Google Scholar

    [23] 杨涛, 薛紫晨, 杨竞红, 等. 南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征[J]. 地球学报, 2003, 24(6):511-514

    Google Scholar

    YANG Tao, XUE Zichen, YANG Jinghong, et al. Oxygen and hydrogen isotopic compositions of pore water from marine sediments in the northern South China Sea [J]. Acta Geoscientica Sinica, 2003, 24(6): 511-514.

    Google Scholar

    [24] 邬黛黛, 吴能友, 付少英, 等. 南海北部东沙海域水合物区浅表层沉积物的地球化学特征[J]. 海洋地质与第四纪地质, 2010, 30(5):41-51

    Google Scholar

    WU Daidai, WU Nengyou, FU Shaoying, et al. Geochemical characteristics of shallow sediments in the gas hydrate distribution area of Dongsha, the northern South China Sea [J]. Marine Geology & Quaternary Geology, 2010, 30(5): 41-51.

    Google Scholar

    [25] 王竣雅, 邬黛黛, 陈雪刚. 南海神狐海域Site 4B沉积物地球化学特征及其对甲烷渗漏的指示意义[J]. 沉积学报, 2019, 37(3):648-660

    Google Scholar

    WANG Junya, WU Daidai, CHEN Xuegang. Geochemical characteristics of site-4B sediments from the Shenhu area of the South China Sea: implications for methane seepage [J]. Acta Sedimentologica Sinica, 2019, 37(3): 648-660.

    Google Scholar

    [26] März C, Hoffmann J, Bleil U, et al. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean) [J]. Marine Geology, 2008, 255(3-4): 118-130. doi: 10.1016/j.margeo.2008.05.013

    CrossRef Google Scholar

    [27] Pierre C, Blanc-Valleron M M, Caquineau S, et al. Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343-U1345) [J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2016, 125-126: 133-144. doi: 10.1016/j.dsr2.2014.03.011

    CrossRef Google Scholar

    [28] Hu Y, Feng D, Liang Q Y, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea [J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 122: 84-94. doi: 10.1016/j.dsr2.2015.06.012

    CrossRef Google Scholar

    [29] 邬黛黛, 吴能友, 张美, 等. 东沙海域SMI与甲烷通量的关系及对水合物的指示[J]. 地球科学—中国地质大学学报, 2013, 38(6):1309-1320 doi: 10.3799/dqkx.2013.128

    CrossRef Google Scholar

    WU Daidai, WU Nengyou, ZHANG Mei, et al. Relationship of sulfate-methane interface (SMI), methane flux and the underlying gas hydrate in Dongsha area, northern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2013, 38(6): 1309-1320. doi: 10.3799/dqkx.2013.128

    CrossRef Google Scholar

    [30] 吴庐山, 杨胜雄, 梁金强, 等. 南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义[J]. 中国科学: 地球科学, 2013, 56(4):530-540 doi: 10.1007/s11430-012-4545-6

    CrossRef Google Scholar

    WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu area, the South China Sea [J]. Science China Earth Sciences, 2013, 56(4): 530-540. doi: 10.1007/s11430-012-4545-6

    CrossRef Google Scholar

    [31] Borowski W S, Paull C K, Ussler Ⅲ W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    CrossRef Google Scholar

    [32] Borowski W S. Pore-water sulfate concentration gradients, isotopic compositions, and diagenetic processes overlying continental margin, methane-rich sediments associated with gas hydrates[D]. Doctor Dissertation of University of North Carolina, 998.

    Google Scholar

    [33] 李学刚, 宋金明, 袁华茂, 等. 深海大洋最小含氧带(OMZ)及其生态环境效应[J]. 海洋科学, 2017, 41(12):127-138

    Google Scholar

    LI Xuegang, SONG Jinming, YUAN Huamao, et al. The oxygen minimum zones (OMZs) and its eco-environmental effects in ocean [J]. Marine Sciences, 2017, 41(12): 127-138.

    Google Scholar

    [34] 龚建明, 廖晶, 孙晶, 等. 巴基斯坦马克兰增生楔天然气水合物的主控因素[J]. 海洋地质前沿, 2016, 32(12):10-15

    Google Scholar

    GONG Jianming, LIAO Jing, SUN Jing, et al. Factors controlling gas hydrate accumulation in makran accretionary wedge off Pakistan [J]. Marine Geology Frontiers, 2016, 32(12): 10-15.

    Google Scholar

    [35] Grando G, McClay K. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran [J]. Sedimentary Geology, 2007, 196(1-4): 157-179. doi: 10.1016/j.sedgeo.2006.05.030

    CrossRef Google Scholar

    [36] Von Rad U, Berner U, Delisle G, et al. Gas and fluid venting at the Makran accretionary wedge off Pakistan [J]. Geo-Marine Letters, 2000, 20(1): 10-19. doi: 10.1007/s003670000033

    CrossRef Google Scholar

    [37] 龚建明, 廖晶, 尹维翰, 等. 北印度洋马克兰增生楔天然气水合物的成藏模式[J]. 海洋地质与第四纪地质, 2018, 38(2):148-155

    Google Scholar

    GONG Jianming, LIAO Jing, YIN Weihan, et al. Gas hydrate accumulation models of Makran accretionary wedge, northern Indian Ocean [J]. Marine Geology & Quaternary Geology, 2018, 38(2): 148-155.

    Google Scholar

    [38] 栾锡武. 天然气水合物的上界面-硫酸盐还原-甲烷厌氧氧化界面[J]. 海洋地质与第四纪地质, 2009, 29(2):91-102

    Google Scholar

    LUAN Xiwu. Sulfate-methane interface: the upper boundary of gas hydrate zone [J]. Marine Geology & Quaternary Geology, 2009, 29(2): 91-102.

    Google Scholar

    [39] Borowski W S, Paull C K, Ussler W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates [J]. Marine Geology, 1999, 159(1-4): 131-154. doi: 10.1016/S0025-3227(99)00004-3

    CrossRef Google Scholar

    [40] 方银霞, 初凤友. 硫酸盐-甲烷界面与甲烷通量及下伏天然气水合物赋存的关系[J]. 海洋学研究, 2007, 25(1):1-9

    Google Scholar

    FANG Yinxia, CHU Fengyou. The relationship of sulfate-methane interface with the methane flux and the underlying gas hydrate [J]. Journal of Marine Sciences, 2007, 25(1): 1-9.

    Google Scholar

    [41] Borowski W S, Hoehler T M, Alperin M J, et al. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 164: 87-99.

    Google Scholar

    [42] Zheng Y, Anderson R F, Van Geen A, et al. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin [J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4165-4178. doi: 10.1016/S0016-7037(00)00495-6

    CrossRef Google Scholar

    [43] Hesse R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: what have we learned in the past decade? [J]. Earth-Science Reviews, 2003, 61(1-2): 149-179. doi: 10.1016/S0012-8252(02)00117-4

    CrossRef Google Scholar

    [44] Wehrmann L M, Risgaard-Petersen N, Schrum H N, et al. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323) [J]. Chemical Geology, 2011, 284(3-4): 251-261. doi: 10.1016/j.chemgeo.2011.03.002

    CrossRef Google Scholar

    [45] Mazurenko L L, Soloviev V A, Gardner J M, et al. Gas hydrates in the Ginsburg and Yuma mud volcano sediments (Moroccan Margin): results of chemical and isotopic studies of pore water [J]. Marine Geology, 2003, 195(1-4): 201-210. doi: 10.1016/S0025-3227(02)00688-6

    CrossRef Google Scholar

    [46] Wang M, Li Q, Cai F, et al. Formation of authigenic carbonates at a methane seep site in the middle Okinawa Trough, East China Sea [J]. Journal of Asian Earth Sciences, 2019, 185: 104028. doi: 10.1016/j.jseaes.2019.104028

    CrossRef Google Scholar

    [47] Luo M, Chen L Y, Wan S H, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea [J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018

    CrossRef Google Scholar

    [48] Mazumdar A, João H M, Peketi A, et al. Geochemical and geological constraints on the composition of marine sediment pore fluid: Possible link to gas hydrate deposits [J]. Marine and Petroleum Geology, 2012, 38(1): 35-52. doi: 10.1016/j.marpetgeo.2012.07.004

    CrossRef Google Scholar

    [49] 李清, 蔡峰, 梁杰, 等. 东海冲绳海槽西部陆坡甲烷渗漏发育的孔隙水地球化学证据[J]. 中国科学: 地球科学, 2015, 58(6):986-995 doi: 10.1007/s11430-014-5034-x

    CrossRef Google Scholar

    LI Qing, CAI Feng, LIANG Jie, et al. Geochemical constraints on the methane seep activity in western slope of the middle Okinawa Trough, the East China Sea [J]. Science China Earth Sciences, 2015, 58(6): 986-995. doi: 10.1007/s11430-014-5034-x

    CrossRef Google Scholar

    [50] Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton NJ: Princeton University Press, 1980.

    Google Scholar

    [51] 吴自军, 周怀阳, 彭晓彤. 珠江口及其邻近海域沉积物甲烷-硫酸根界面分布深度及影响因素[J]. 海洋与湖沼, 2009, 40(3):249-260

    Google Scholar

    WU Zijun, ZHOU Huaiyang, PENG Xiaotong. Depth of sulfate-methane interface (SMI) in sediment and affecting factors in the pearl river estuary and vicinal south china sea [J]. Oceanologia et Limnologia Sinica, 2009, 40(3): 249-260.

    Google Scholar

    [52] 陆红锋, 刘坚, 陈芳, 等. 南海东北部硫酸盐还原-甲烷厌氧氧化界面——海底强烈甲烷渗溢的记录[J]. 海洋地质与第四纪地质, 2012, 32(1):93-98

    Google Scholar

    LU Hongfeng, LIU Jian, CHEN Fang, et al. Shallow sulfate-methane interface in northeastern South China Sea: An indicator of strong methane seepage on seafloor [J]. Marine Geology & Quaternary Geology, 2012, 32(1): 93-98.

    Google Scholar

    [53] Fang Y X, Chu F Y. The relationship of sulfate-methane interface, the methane flux and the underlying gas hydrate [J]. Marine Science Bulletin, 2008, 10(1): 28-37.

    Google Scholar

    [54] Kvenvolden K A. Comparison of marine gas hydrates in sediments of an active and passive continental margin [J]. Marine and Petroleum Geology, 1985, 2(1): 65-71. doi: 10.1016/0264-8172(85)90049-2

    CrossRef Google Scholar

    [55] 陈祈, 王家生, 魏清, 等. 综合大洋钻探计划311航次沉积物中自生黄铁矿及其硫稳定同位素研究[J]. 现代地质, 2008, 22(3):402-406 doi: 10.3969/j.issn.1000-8527.2008.03.009

    CrossRef Google Scholar

    CHEN Qi, WANG Jiasheng, WEI Qing, et al. Study on the authigenic pyrites and their sulfur stable isotopes in recovered sediments during IODP 311 expedition [J]. Geoscience, 2008, 22(3): 402-406. doi: 10.3969/j.issn.1000-8527.2008.03.009

    CrossRef Google Scholar

    [56] 陈翰, 陈忠, 颜文, 等. 神狐海域08CF7岩心沉积物的自生矿物特征及其对甲烷渗漏的指示[J]. 天然气工业, 2014, 34(2):154-162

    Google Scholar

    CHEN Han, CHEN Zhong, YAN Wen, et al. Characteristics of authigenic minerals in sediments of core 08CF7 in Shenhu area in northern South China Sea: Implications for methane seepage [J]. Natural Gas Industry, 2014, 34(2): 154-162.

    Google Scholar

    [57] 陈惠昌, 赖勇, 卢海龙, 等. 南海神狐天然气水合物系统沉积物中自生黄铁矿的特征研究[J]. 海洋学报, 2018, 40(7):116-133

    Google Scholar

    CHEN Huichang, LAI Yong, LU Hailong, et al. Study on authigenic pyrite in sediments of gas hydrate geo-system in the Shenhu area, South China Sea [J]. Acta Oceanologica Sinica, 2018, 40(7): 116-133.

    Google Scholar

    [58] Sato H, Hayashi K, Ogawa Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: Insights into the effect of anaerobic oxidation of methane [J]. Marine Geology, 2012, 323-325: 47-55. doi: 10.1016/j.margeo.2012.07.013

    CrossRef Google Scholar

    [59] Chen F, Hu Y, Feng D, et al. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea [J]. Chemical Geology, 2016, 443: 173-181. doi: 10.1016/j.chemgeo.2016.09.029

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1796) PDF downloads(114) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint