2020 Vol. 40, No. 6
Article Contents

WU Decheng, HOU Fanghui, QI Jianghao, ZHU Xiaoqing. Seismic survey and exploration methods for Neotectonic active faults in the area off China continent[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 121-132. doi: 10.16562/j.cnki.0256-1492.2020091101
Citation: WU Decheng, HOU Fanghui, QI Jianghao, ZHU Xiaoqing. Seismic survey and exploration methods for Neotectonic active faults in the area off China continent[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 121-132. doi: 10.16562/j.cnki.0256-1492.2020091101

Seismic survey and exploration methods for Neotectonic active faults in the area off China continent

More Information
  • Located in the key area of land-ocean plate interaction, offshore China is an area frequently suffered from neotectonic movement-caused disasters, and active faults are one of their main triggers. Marine seismic exploration methods such as sub-bottom profiler, single channel seismic, multi-channel seismic and ocean bottom seismometer (OBS) are the main geophysical tools used to investigate active faults offshore. Each of them has its own technical advantages and detection ranges to play roles in the investigation and study of active faults offshore. Recently, through OBS wide-angle reflection/refraction deep seismic exploration and long spread multi-channel seismic exploration, we have been able to gain the distribution patterns of regional deep-large faults in China offshore area, and the understanding of deep dynamic mechanism of the formation and evolution of deep-large faults is greatly deepened. Upon the basis, we analyzed the control and constraint relationship of active faults in this paper. Newly buried active faults are young in age and shallow in burial depth. According to the features as such, we studied in this paper the distribution pattern, strike and differential rise and fall of active faults in China offshore area with such methods as sub-bottom profiler, single-channel seismic and high-resolution multi-channel seismic. And the main characteristics and functions of marine seismic exploration techniques and methods, as well as their functions and effects in the investigation of active faults in the sea area, are summarized in addition to the main achievements obtained in the researches. It is concluded that for future marine neotectonic seismic prospecting and research, it is necessary to insist on the idea of multi-technology methods and systematic investigation, focus more on improving the accuracy of seismic exploration, and explore the application of new technology such as S-wave seismic exploration and seabed vibrator.

  • 加载中
  • [1] 郭玉贵, 王红霞, 邓志辉, 等. 山东沿海及近海地震分形分析[J]. 地球物理学进展, 2005, 20(1):155-159 doi: 10.3969/j.issn.1004-2903.2005.01.028

    CrossRef Google Scholar

    GUO Yugui, WANG Hongxia, DENG Zhihui, et al. The fractal analysis on seism in the coastal and Offshore areas of Shandong province [J]. Progress in Geophysics, 2005, 20(1): 155-159. doi: 10.3969/j.issn.1004-2903.2005.01.028

    CrossRef Google Scholar

    [2] 曹敬贺, 孙金龙, 徐辉龙, 等. 珠江口海域滨海断裂带的地震学特征[J]. 地球物理学报, 2014, 57(2):498-508 doi: 10.6038/cjg20140215

    CrossRef Google Scholar

    CAO Jinghe, SUN Jinlong, XU Huilong, et al. Seismological features of the littoral fault zone in the Pearl River Estuary [J]. Chinese Journal of Geophysics, 2014, 57(2): 498-508. doi: 10.6038/cjg20140215

    CrossRef Google Scholar

    [3] 李旭东, 刘绍文, 王丽. 江苏—南黄海地区地震活动时空分布特征及其孕震构造分析[J]. 高校地质学报, 2018, 24(4):551-562

    Google Scholar

    LI Xundong, LIU Shaowen, WANG Li. Spatiotemporal pattern of earthquake activities and seismotectonics in Jiangsu and adjacent southern Yellow Sea Area [J]. Geological Journal of China Universities, 2018, 24(4): 551-562.

    Google Scholar

    [4] 吴中海. 活断层的术语、研究进展及问题思考[J]. 地球科学与环境学报, 2018, 40(6):706-726 doi: 10.3969/j.issn.1672-6561.2018.06.002

    CrossRef Google Scholar

    WU Zhonghai. Active faults: Terminology, research advance, and thinking on some problems [J]. Journal of Earth Sciences and Environment, 2018, 40(6): 706-726. doi: 10.3969/j.issn.1672-6561.2018.06.002

    CrossRef Google Scholar

    [5] 王志才, 邓起东, 晁洪太, 等. 山东半岛北部近海海域北西向蓬莱-威海断裂带的声波探测[J]. 地球物理学报, 2006, 49(4):1092-1101 doi: 10.3321/j.issn:0001-5733.2006.04.022

    CrossRef Google Scholar

    WANG Zhicai, DENG Qidong, CHAO Hongtai, et al. Shallow-depth sonic reflection profiling studies on the active Penglai-Weihai Fault zone offshore of the Northern Shandong Peninsula [J]. Chinese Journal of Geophysics, 2006, 49(4): 1092-1101. doi: 10.3321/j.issn:0001-5733.2006.04.022

    CrossRef Google Scholar

    [6] 李西双, 裴彦良, 刘保华, 等. 1969年渤海MS7.4地震发震断层的声学探测[J]. 地球物理学报, 2009, 52(9):2291-2301 doi: 10.3969/j.issn.0001-5733.2009.09.013

    CrossRef Google Scholar

    LI Xishuang, PEI Yanliang, LIU Baohua, et al. Acoustic detection of the causative fault of 1969 MS7.4 earthquake in Bohai Sea [J]. Chinese Journal of Geophysics, 2009, 52(9): 2291-2301. doi: 10.3969/j.issn.0001-5733.2009.09.013

    CrossRef Google Scholar

    [7] 陆凯, 侯方辉, 李日辉, 等. 利用单道地震研究黄、渤海海域的活动断裂[J]. 海洋地质前沿, 2012, 28(8):27-30

    Google Scholar

    LU Kai, HOU Fanghui, LI Rihui, et al. Using single-channel seismics for active faults investigation in Yellow Sea and Bohai Sea [J]. Marine Geology Frontiers, 2012, 28(8): 27-30.

    Google Scholar

    [8] 吴志强, 肖国林, 林年添, 等. 基于南黄海区域地质调查的地震关键技术和成果[J]. 海洋地质与第四纪地质, 2014, 34(6):119-126

    Google Scholar

    WU Zhiqiang, XIAO Guolin, LIN Niantian, et al. The key seismic technology and results based on the regional geological survey of the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2014, 34(6): 119-126.

    Google Scholar

    [9] 郝天珧, 游庆瑜. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报, 2011, 54(12):3352-3361 doi: 10.3969/j.issn.0001-5733.2011.12.033

    CrossRef Google Scholar

    HAO Tianyao, YOU Qingyu. Progress of homemade OBS and its application on ocean bottom structure survey [J]. Chinese Journal of Geophysics, 2011, 54(12): 3352-3361. doi: 10.3969/j.issn.0001-5733.2011.12.033

    CrossRef Google Scholar

    [10] 刘保华, 丁继胜, 裴彦良, 等. 海洋地球物理探测技术及其在近海工程中的应用[J]. 海洋科学进展, 2005, 23(3):374-384 doi: 10.3969/j.issn.1671-6647.2005.03.019

    CrossRef Google Scholar

    LIU Baohua, DING Jisheng, PEI Yanliang, et al. Marine geophysical survey techniques and their applications to offshore engineering [J]. Advances in Marine Science, 2005, 23(3): 374-384. doi: 10.3969/j.issn.1671-6647.2005.03.019

    CrossRef Google Scholar

    [11] 张训华, 赵铁虎. 海洋地质调查技术[M]. 北京: 海洋出版社, 2017.

    Google Scholar

    ZHANG Xunhua, ZHAO Tiehu. Survey Technologies of Marine Geology[M]. Beijing: China Ocean Press, 2017.

    Google Scholar

    [12] Marsset T, Marsset B, Thomas Y, et al. Very high resolution 3D seismic: a new imaging tool for sub-bottom profiling [J]. Comptes Rendus Geoscience, 2002, 334(6): 403-408. doi: 10.1016/S1631-0713(02)01766-2

    CrossRef Google Scholar

    [13] Chiocci F L, Cattaneo A, Urgeles R. Seafloor mapping for geohazard assessment: state of the art [J]. Marine Geophysical Research, 2011, 32(1): 1-11.

    Google Scholar

    [14] Petersen C J, Bünz S, Hustoft S, et al. High-resolution P-Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift [J]. Marine and Petroleum Geology, 2010, 27(9): 1981-1994. doi: 10.1016/j.marpetgeo.2010.06.006

    CrossRef Google Scholar

    [15] 褚宏宪, 杨源, 张晓波, 等. 高分辨率单道地震调查数据采集技术方法[J]. 海洋地质前沿, 2012, 28(12):70-74

    Google Scholar

    CHU Hongxian, YANG Yuan, ZHANG Xiaobo, et al. Data acquisition techenique for high resolution single-channel seismic survey [J]. Marine Geology Frontiers, 2012, 28(12): 70-74.

    Google Scholar

    [16] 王舒畋. 浅层物探技术在近海灾害地质与工程地质调查中的应用[J]. 海洋石油, 2008, 28(1):6-12 doi: 10.3969/j.issn.1008-2336.2008.01.002

    CrossRef Google Scholar

    Wang Shutian. Application of shallow bed geophysical exploration technique to offshore hazard geology and engineering geology [J]. Offshore Oil, 2008, 28(1): 6-12. doi: 10.3969/j.issn.1008-2336.2008.01.002

    CrossRef Google Scholar

    [17] 杨文达, 刘望军. 海洋高分辨率地震技术在浅部地质勘探中的运用[J]. 海洋石油, 2007, 27(2):18-25 doi: 10.3969/j.issn.1008-2336.2007.02.005

    CrossRef Google Scholar

    YANG Wenda, LIU Wangjun. Marine high-resolution seismic techniques applying in the geological exploration of shallow strata [J]. Offshore Oil, 2007, 27(2): 18-25. doi: 10.3969/j.issn.1008-2336.2007.02.005

    CrossRef Google Scholar

    [18] 裴彦良, 赵月霞, 刘保华, 等. 近海高分辨率多道地震拖缆系统及其在海洋工程中的应用[J]. 地球物理学进展, 2010, 25(1):331-336

    Google Scholar

    PEI Yanliang, ZHAO Yuexia, LIU Baohua, et al. The offshore high-resolution multi-channel seismic streamer and its application to the ocean engineering [J]. Progress in Geophysics, 2010, 25(1): 331-336.

    Google Scholar

    [19] 孟庆生, 楚贤峰, 郭秀军, 等. 高分辨率数据处理技术在近海工程地震勘探中的应用[J]. 地球物理学进展, 2007, 22(3):1006-1010 doi: 10.3969/j.issn.1004-2903.2007.03.053

    CrossRef Google Scholar

    MENG Qingsheng, CHU Xianfeng, GUO Xiujun, et al. The application of high resolution seismic data processing technique in multi-channel shallow offshore engineering seismic surveys [J]. Progress in Geophysics, 2007, 22(3): 1006-1010. doi: 10.3969/j.issn.1004-2903.2007.03.053

    CrossRef Google Scholar

    [20] Verschuur D J, Berkhout A J. Estimation of multiple scattering by iterative inversion, Part Ⅱ: Practical aspects and examples [J]. Geophysics, 1997, 62(5): 1596-1611. doi: 10.1190/1.1444262

    CrossRef Google Scholar

    [21] Trad D O, Ulrych T J, Sacchi M D. Accurate interpolation with high-resolution time-variant Radon transforms [J]. Geophysics, 2002, 67(2): 644-656. doi: 10.1190/1.1468626

    CrossRef Google Scholar

    [22] Abbad B, Ursin B, Porsani M J. A fast, modified parabolic Radon transform [J]. Geophysics, 2011, 76(1): V11-V24. doi: 10.1190/1.3532079

    CrossRef Google Scholar

    [23] 骆迪, 蔡峰, 吴志强, 等. 海洋短排列高分辨率多道地震高精度成像关键技术[J]. 地球物理学报, 2019, 62(2):730-742 doi: 10.6038/cjg2019M0178

    CrossRef Google Scholar

    LUO Di, CAI Feng, WU Zhiqiang, et al. The key technologies of marine small scale high resolution multichannel seismic high-precision imaging [J]. Chinese Journal of Geophysics, 2019, 62(2): 730-742. doi: 10.6038/cjg2019M0178

    CrossRef Google Scholar

    [24] 王海平, 李春雷, 焦叙明, 等. 海底及浅层地质灾害的高分辨率地震预测技术[J]. 工程地球物理学报, 2016, 13(6):694-700 doi: 10.3969/j.issn.1672-7940.2016.06.002

    CrossRef Google Scholar

    WANG Haiping, LI Chunlei, JIAO Xuming, et al. High-resolution seismic prediction technology of seafloor and shallow geohazards [J]. Chinese Journal of Engineering Geophysics, 2016, 13(6): 694-700. doi: 10.3969/j.issn.1672-7940.2016.06.002

    CrossRef Google Scholar

    [25] 吴志强, 郝天珧, 张训华, 等. 扬子块体与华北块体在海区的接触关系: 来自上下源、长排列多道地震剖面的新认识[J]. 地球物理学报, 2015, 58(5):1692-1705 doi: 10.6038/cjg20150520

    CrossRef Google Scholar

    WU Zhiqiang, HAO Tianyao, ZHANG Xunhua, et al. Contact relationships between the North China block and the Yangtze block: new constraints from upper/lower-source and long spread multi-channel seismic profiles [J]. Chinese Journal of Geophysics, 2015, 58(5): 1692-1705. doi: 10.6038/cjg20150520

    CrossRef Google Scholar

    [26] 吴志强, 郝天珧, 唐松华, 等. 立体气枪阵列延迟激发震源特性及在浅海区OBS探测中的应用[J]. 地球物理学报, 2016, 59(7):2573-2586 doi: 10.6038/cjg20160722

    CrossRef Google Scholar

    WU Zhiqiang, HAO Tianyao, TANG Songhua, et al. Tridimensional air-gun array with delay fired source signal characteristics and the application in OBS exploration in shallow sea [J]. Chinese Journal of Geophysics, 2016, 59(7): 2573-2586. doi: 10.6038/cjg20160722

    CrossRef Google Scholar

    [27] Aleman A, Heimbach J, Medina E, et al. Broadband processing for Campeche Basin: Improved seismic resolution and attribute derivation[C]//2017 SEG International Exposition and Annual Meeting. Houston, Texas: SEG, 2017: 4881-4886.

    Google Scholar

    [28] Lee G S, Kim D C, Yoo D G, et al. Stratigraphy of late Quaternary deposits using high resolution seismic profile in the southeastern Yellow Sea [J]. Quaternary International, 2014, 344: 109-124.

    Google Scholar

    [29] Gray S H. Seismic imaging and inversion: what are we doing, how are we doing, and where are we going?[C]//2014 SEG Annual Meeting. Denver, Colorado, USA: SEG, 2014: 4416-4420.

    Google Scholar

    [30] Lu S M, McMechan G A. Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas [J]. Geophysics, 2004, 69(1): 164-179. doi: 10.1190/1.1649385

    CrossRef Google Scholar

    [31] Chen Q, Sidney S. Seismic attribute technology for reservoir forecasting and monitoring [J]. The Leading Edge, 1997, 16(5): 445-456. doi: 10.1190/1.1437657

    CrossRef Google Scholar

    [32] 王开燕, 徐清彦, 张桂芳, 等. 地震属性分析技术综述[J]. 地球物理学进展, 2013, 28(2):815-823 doi: 10.6038/pg20130231

    CrossRef Google Scholar

    WANG Kaiyan, XU Qingyan, ZHANG Guifang, et al. Summary of seismic attribute analysis [J]. Progress in Geophysics, 2013, 28(2): 815-823. doi: 10.6038/pg20130231

    CrossRef Google Scholar

    [33] 赵维娜, 张训华, 吴志强, 等. 三瞬属性在南黄海第四纪地震地层分析中的应用[J]. 海洋学报, 2016, 38(7):117-125

    Google Scholar

    ZHAO Weina, ZHANG Xunhua, WU Zhiqiang, et al. Application of three instantaneous attributes in the analysis of Quaternary seismic strata in the southern Yellow Sea [J]. Haiyang Xuebao, 2016, 38(7): 117-125.

    Google Scholar

    [34] Zhao W N, Zhang X H, Wang Z B, et al. Quaternary high-resolution seismic sequence based on instantaneous phase of single-channel seismic data in the South Yellow Sea, China [J]. Quaternary International, 2018, 468: 4-13. doi: 10.1016/j.quaint.2018.01.014

    CrossRef Google Scholar

    [35] 吴中海, 张岳桥, 胡道功. 新构造、活动构造与地震地质[J]. 地质通报, 2014, 33(4):391-402 doi: 10.3969/j.issn.1671-2552.2014.04.001

    CrossRef Google Scholar

    WU Zhonghai, ZHANG Yueqiao, HU Daogong. Neotectonics, active tectonics and earthquake geology [J]. Geological Bulletin of China, 2014, 33(4): 391-402. doi: 10.3969/j.issn.1671-2552.2014.04.001

    CrossRef Google Scholar

    [36] 阮爱国, 李家彪, 冯占英, 等. 海底地震仪及其国内外发展现状[J]. 东海海洋, 2004, 22(2):19-27

    Google Scholar

    RUAN Aiguo, LI Jiabiao, FENG Zhanying, et al. Ocean bottom seismometer and its development in the world [J]. Donghai Marine Science, 2004, 22(2): 19-27.

    Google Scholar

    [37] Zhao W N, Zhang X H, Meng X J, et al. S-wave velocity structures and Vp/Vs ratios beneath the South Yellow Sea from ocean bottom seismograph data [J]. Journal of Applied Geophysics, 2017, 139: 211-222. doi: 10.1016/j.jappgeo.2017.02.015

    CrossRef Google Scholar

    [38] 赵维娜, 张训华, 邹志辉, 等. 基于OBS数据的南黄海沉积地层速度结构特征[J]. 地球物理学报, 2019, 62(1):183-196 doi: 10.6038/cjg2018L0623

    CrossRef Google Scholar

    ZHAO Weina, ZHANG Xunhua, ZOU Zhihui, et al. Velocity structure of sedimentary formation in the South Yellow Sea Basin based on OBS data [J]. Chinese Journal of Geophysics, 2019, 62(1): 183-196. doi: 10.6038/cjg2018L0623

    CrossRef Google Scholar

    [39] 黄忠贤, 胥颐, 郝天珧, 等. 中国东部海域岩石圈结构面波层析成像[J]. 地球物理学报, 2009, 52(3):653-662

    Google Scholar

    HUANG Zhongxian, XU Yi, HAO Tianyao, et al. Surface wave tomography of lithospheric structure in the seas of east China [J]. Chinese Journal of Geophysics, 2009, 52(3): 653-662.

    Google Scholar

    [40] 秦晶晶, 袁洪克, 何银娟, 等. 层析成像技术在城市活断层探测中的应用[J]. 地球物理学进展, 2018, 33(5):2153-2158 doi: 10.6038/pg2018BB0383

    CrossRef Google Scholar

    QIN Jingjing, YUAN Hongke, HE Yinjuan, et al. Application of tomography inversion method in detecting active fault [J]. Progress in Geophysics, 2018, 33(5): 2153-2158. doi: 10.6038/pg2018BB0383

    CrossRef Google Scholar

    [41] 余景锋, 江为为, 郝天珧, 等. 中国东部海区及其邻域岩石层结构与地球动力学特征研究[J]. 地球物理学进展, 2015, 30(3):1100-1109 doi: 10.6038/pg20150314

    CrossRef Google Scholar

    YU Jingfeng, JIANG Weiwei, HAO Tiaoyao, et al. Lithosphere structure and geodynamics characteristics of China eastern seas and adjacent region [J]. Progress in Geophysics, 2015, 30(3): 1100-1109. doi: 10.6038/pg20150314

    CrossRef Google Scholar

    [42] 赵明辉, 丘学林, 夏少红, 等. 南海东北部三分量海底地震仪记录中横波的识别和分析[J]. 自然科学进展, 2007, 17(11):1516-1523 doi: 10.3321/j.issn:1002-008x.2007.11.008

    CrossRef Google Scholar

    ZHAO Minghui, QIU Xuelin, XIA Shaohong, et al. Identification and analysis of shear waves records by three-component OBSs in northeastern South China Sea [J]. Progress in Natural Science, 2007, 17(11): 1516-1523. doi: 10.3321/j.issn:1002-008x.2007.11.008

    CrossRef Google Scholar

    [43] 赵维娜, 张训华, 孟祥君, 等. 南黄海OBS数据转换横波分析及其地质意义[J]. 地球物理学报, 2017, 60(4):1479-1490 doi: 10.6038/cjg20170421

    CrossRef Google Scholar

    ZHAO Weina, ZHANG Xunhua, MENG Xiangjun, et al. Analysis of converted shear-waves based on OBS data in the South Yellow Sea and its geological implications [J]. Chinese Journal of Geophysics, 2017, 60(4): 1479-1490. doi: 10.6038/cjg20170421

    CrossRef Google Scholar

    [44] Zhao M H, Qiu X L, Xia S H, et al. Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data [J]. Tectonophysics, 2010, 480(1-4): 183-197. doi: 10.1016/j.tecto.2009.10.004

    CrossRef Google Scholar

    [45] Zhao W N, Wang H G, Shi H C, et al. Crustal structure from onshore-offshore wide-angle seismic data: Application to Northern Sulu Orogen and its adjacent area [J]. Tectonophysics, 2019, 770: 228220. doi: 10.1016/j.tecto.2019.228220

    CrossRef Google Scholar

    [46] Ruan A G, Li J B, Lee C S, et al. Passive seismic experiment and ScS wave splitting in the southwestern subbasin of South China Sea [J]. Chinese Science Bulletin, 2012, 57(25): 3381-3390. doi: 10.1007/s11434-012-5132-0

    CrossRef Google Scholar

    [47] 王应斌, 黄雷, 刘廷海. 渤海新构造运动主要特征与构造型式[J]. 中国海上油气, 2012, 24(S1):6-10

    Google Scholar

    WANG Yingbin, HUANG Lei, LIU Yanhai. The main characteristics and structural styles of Bohai newtectonism [J]. China Offshore Oil and Gas, 2012, 24(S1): 6-10.

    Google Scholar

    [48] 陈江欣, 侯方辉, 李日辉, 等. 渤海海域中西部新构造运动特征[J]. 海洋地质与第四纪地质, 2018, 38(4):83-91

    Google Scholar

    CHEN Jiangxin, HOU Fanghui, LI Rihui, et al. Neotectonics in the western and central Bohai Sea [J]. Marine Geology & Quaternary Geology, 2018, 38(4): 83-91.

    Google Scholar

    [49] 周斌, 邓志辉, 徐杰, 等. 渤海新构造运动及其对晚期油气成藏的影响[J]. 地球物理学进展, 2009, 24(6):2135-2144 doi: 10.3969/j.issn.1004-2903.2009.06.028

    CrossRef Google Scholar

    ZHOU Bin, DENG Zhihui, XU Jie, et al. Characteristics of neotectonism and their relationship with late hydrocarbon accumulation in the Bohai sea [J]. Progress in Geophysics, 2009, 24(6): 2135-2144. doi: 10.3969/j.issn.1004-2903.2009.06.028

    CrossRef Google Scholar

    [50] 吴德城, 朱晓青, 王庆良, 等. 南黄海西北部与深大断裂相关的活动断层特征[J]. 海洋地质前沿, 2020, 36(2):12-18

    Google Scholar

    WU Decheng, ZHU Xiaoqing, WANG Qingliang, et al. Characteristics of active faults related to deep faults in the northwestern part of the South Yellow Sea [J]. Marine Geology Frontiers, 2020, 36(2): 12-18.

    Google Scholar

    [51] 王志才, 邓起东, 杜宪宋, 等. 莱州湾海域郯庐断裂带活断层探测[J]. 地震学报, 2006, 28(5):493-503 doi: 10.3321/j.issn:0253-3782.2006.05.006

    CrossRef Google Scholar

    WANG Zhicai, DENG Qidong, DU Xiansong, et al. Active fault survey on the Tanlu fault zone in Laizhou Bay [J]. Acta Seismologica Sinica, 2006, 28(5): 493-503. doi: 10.3321/j.issn:0253-3782.2006.05.006

    CrossRef Google Scholar

    [52] 侯方辉, 王保军, 孙建伟, 等. 渤海海峡跨海通道新构造运动特征及其工程地质意义[J]. 海洋地质前沿, 2016, 32(5):25-30

    Google Scholar

    HOU Fanghui, WANG Baojun, SUN Jianwei, et al. Neotectonic movement across the Bohai Strait and its engineering geologic significance [J]. Marine Geology Frontiers, 2016, 32(5): 25-30.

    Google Scholar

    [53] 李西双, 赵月霞, 刘保华, 等. 郯庐断裂带渤海段晚更新世以来的浅层构造变形和活动性[J]. 科学通报, 2010, 55(18):1908-1916 doi: 10.1007/s11434-010-3073-z

    CrossRef Google Scholar

    LI Xishuang, ZHAO Yuexia, LIU Baohua, et al. Structural deformation and fault activity of the Tan-Lu Fault zone in the Bohai Sea since the Late Pleistocene [J]. Chinese Science Bulletin, 2010, 55(18): 1908-1916. doi: 10.1007/s11434-010-3073-z

    CrossRef Google Scholar

    [54] Kim H J, Kim C H, Hao T Y, et al. Crustal structure of the Gunsan Basin in the SE Yellow Sea from ocean bottom seismometer (OBS) data and its linkage to the South China Block [J]. Journal of Asian Earth Sciences, 2019, 180: 103881. doi: 10.1016/j.jseaes.2019.103881

    CrossRef Google Scholar

    [55] 王志才, 晁洪太, 杜宪宋, 等. 南黄海北部千里岩断裂活动性初探[J]. 地震地质, 2008, 30(1):176-186 doi: 10.3969/j.issn.0253-4967.2008.01.012

    CrossRef Google Scholar

    WANG Zhicai, CHAO Hongtai, DU Xiansong, et al. Preliminary survey on the Quaternary activities of the Qianliyan fault in the northern part of the South Yellow Sea [J]. Seismology and Geology, 2008, 30(1): 176-186. doi: 10.3969/j.issn.0253-4967.2008.01.012

    CrossRef Google Scholar

    [56] 李官保, 刘保华, 赵月霞, 等. 南黄海千里岩附近海域第四纪构造活动特征[J]. 地球科学—中国地质大学学报, 2011, 36(6):977-984

    Google Scholar

    LI Guanbao, LIU Baohua, ZHAO Yuexia, et al. Quaternary tectonic activity near the Qianliyan Island of Southern Yellow Sea [J]. Earth Science-Journal of China University of Geosciences, 2011, 36(6): 977-984.

    Google Scholar

    [57] 沈中延, 周建平, 高金耀, 等. 南黄海北部千里岩隆起带的第四纪活动断裂[J]. 地震地质, 2013, 31(1):64-74 doi: 10.3969/j.issn.0253-4967.2013.01.005

    CrossRef Google Scholar

    SHEN Zhongyan, ZHOU Jianping, GAO Jinyao, et al. Quaternary faults of the Qianliyan Uplift in the northern South Yellow Sea [J]. Seismology and Geology, 2013, 31(1): 64-74. doi: 10.3969/j.issn.0253-4967.2013.01.005

    CrossRef Google Scholar

    [58] 王舒畋, 李斌. 东海新构造与新构造运动[J]. 海洋地质与第四纪地质, 2010, 30(4):141-150

    Google Scholar

    WANG Shutian, LI Bin. Neotectonic features and movement in the east China Sea [J]. Marine Geology & Quaternary Geology, 2010, 30(4): 141-150.

    Google Scholar

    [59] 侯方辉, 张志珣, 张训华, 等. 东海陆架盆地北部新构造运动特征[J]. 海洋地质动态, 2010, 26(11):1-6

    Google Scholar

    HOU Fanghui, ZHANG Zhixun, ZHANG Xunhua, et al. Neotectonic Movement of The northern East China Sea shelf basin [J]. Marine Geology Letters, 2010, 26(11): 1-6.

    Google Scholar

    [60] 孙金龙, 徐辉龙, 李亚敏. 南海东北部新构造运动及其动力学机制[J]. 海洋地质与第四纪地质, 2009, 29(3):61-68

    Google Scholar

    SUN Jinlong, XUN Huilong, LI Yamin. Neotectonics in the northeastern South China Sea and its dynamic mechanism [J]. Marine Geology & Quaternary Geology, 2009, 29(3): 61-68.

    Google Scholar

    [61] 赵明辉, 丘学林, 夏戡原, 等. 南海东北部滨海断裂带的研究现状与展望[J]. 华南地震, 2013, 23(1):20-27

    Google Scholar

    ZHAO Minghui, QIU Xuelin, XIA Kanyuan, et al. The situation and prospect of the research on the Binhai fault of NE South China Sea [J]. South China Journal of Seismology, 2013, 23(1): 20-27.

    Google Scholar

    [62] 赵明辉, 丘学林, 叶春明, 等. 南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析[J]. 地球物理学报, 2004, 47(5):845-852 doi: 10.3321/j.issn:0001-5733.2004.05.016

    CrossRef Google Scholar

    ZHAO Minghui, QIU Xuelin, YE Chunming, et al. Analysis on deep crustal structure along the onshore-offshore seismic profile across the Binhai (Littoral) Fault Zone in northeastern South China Sea [J]. Chinese Journal of Geophysics, 2004, 47(5): 845-852. doi: 10.3321/j.issn:0001-5733.2004.05.016

    CrossRef Google Scholar

    [63] 徐辉龙, 丘学林, 赵明辉, 等. 南海东北部南澳大地震(M=7.5)震中区的地壳结构特征与震源构造[J]. 科学通报, 2006, 51(增刊 2):83-91

    Google Scholar

    XU Huilong, QIU Xuelin, ZHAO Minghui, et al. Nanao earthquake (M=7.5) epicentral area structure characteristics of crust and the source structure in northeast of South China sea [J]. Chinese Science Bulletin, 2006, 51(Suppl. 2): 83-91.

    Google Scholar

    [64] 陈晓辉, 李日辉. 中国东部海域活动构造定量研究若干问题探讨[J]. 海洋地质与第四纪地质, 2017, 37(3):102-110

    Google Scholar

    CHEN Xiaohui, LI Rihui. A review on Quantitative studies of active tectonics in Eastern China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(3): 102-110.

    Google Scholar

    [65] 赵富有, 王世煜, 王典. 横波地震勘查技术在长春市活断层探测中的应用[J]. 地球物理学进展, 2008, 23(1):284-288

    Google Scholar

    ZHAO Fuyou, WANG Shiyu, WANG Dian. Application of seismic shear wave prospecting in detection of active faults in Changchun city [J]. Progress in Geophysics, 2008, 23(1): 284-288.

    Google Scholar

    [66] Barr F J. Dual-sensor OBC technology [J]. The Leading Edge, 1997, 16(1): 45-51. doi: 10.1190/1.1437427

    CrossRef Google Scholar

    [67] Ronen S, Rokkan A, Bouraly R, et al. Imaging shallow gas drilling hazards under three Forties oil field platforms using ocean-bottom nodes [J]. The Leading Edge, 2012, 31(4): 465-469. doi: 10.1190/tle31040465.1

    CrossRef Google Scholar

    [68] Roy D A, Rekos R, Brideau C, et al. A marine vibrator to meet the joint industry project specification[C]//SEG Technical Program Expanded Abstracts. SEG, 2018: 97-101.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(3334) PDF downloads(145) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint