2021 Vol. 41, No. 1
Article Contents

ZHAO Xiaoxiao, WU Yueting, DONG Liang, ZHANG Taoliang, HU Bangqi, LI Qing, WANG Fengping. Reconstruction of terrestrial input changes in sediments in the Western Pacific warm pool using bacterial membrane lipids[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 52-60. doi: 10.16562/j.cnki.0256-1492.2020090201
Citation: ZHAO Xiaoxiao, WU Yueting, DONG Liang, ZHANG Taoliang, HU Bangqi, LI Qing, WANG Fengping. Reconstruction of terrestrial input changes in sediments in the Western Pacific warm pool using bacterial membrane lipids[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 52-60. doi: 10.16562/j.cnki.0256-1492.2020090201

Reconstruction of terrestrial input changes in sediments in the Western Pacific warm pool using bacterial membrane lipids

More Information
  • The West Philippine Sea is a part of the Western Pacific Warm Pool. To reconstruct its thermodynamic changes and terrestrial input changes in the geological history is of great significance for understanding the role of the Warm Pool on a global geological time scale. In this paper, the glycerol dialkyl glycerol tetraethers (GDGTs) of archaea and bacteria is used to reconstruct the temperature and terrestrial input proxy changes for the core XT-47 taking from the West Philippine Sea. The BIT index on top layer of 0~260 cm, corresponding to 16.6~18.8 ka, varies between 0.01~0.2, and the average sea surface temperature reconstructed with TEXH86 is 22.5°C. The absolute sea surface temperature at the bottom layer from 260 cm to 632 cm, (18.8~4 000 ka) reconstructed by TEXH86 fluctuates drastically between 0.6°C and 26°C; BIT>0.3 within these depth range, shows a gradual increase trend, exceeding the threshold for the validity of paleotemperature reconstruction of TEXH86 defined by terrestrial input proxy-BIT, which leads to a serious deviation of the TEXH86 reconstructed paleotemperature within this depth range. Taking 260 cm and 400 cm as boundaries, the sedimentary facies of the core has changed significantly. In a descending order, the upper layer is a large number of laminar diatom mats, the middle layer is interbedded pelagic clay and diatom clay, and the lower layer is pelagic clay deposit; simultaneously, obvious differences in the composition of branched GDGTs (brGDGTs) are observed, indicating that their sources may also be different. Based on the above analysis, we propose that brGDGTs below 260 cm are marine in-situ autochthonous deposits; while that below 260 cm, terrigenous brGDGTs dominate, which are mainly transported as aeolian dust. The results suggest that the changes in terrestrial input can indirectly reflect the strength of the East Asian winter monsoon, and the results may provide new insights for the study of sea-land interactions between high and low latitudes.

  • 加载中
  • [1] Lea D W. The glacial tropical pacific-not just a west side story [J]. Science, 2002, 297(5579): 202-203. doi: 10.1126/science.1073841

    CrossRef Google Scholar

    [2] Xu Z K, Li T G, Wan S M, et al. Evolution of East Asian monsoon: Clay mineral evidence in the western Philippine Sea over the past 700 kyr [J]. Journal of Asian Earth Sciences, 2012, 60: 188-196. doi: 10.1016/j.jseaes.2012.08.018

    CrossRef Google Scholar

    [3] Xu Z K, Li T G, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3182-3196. doi: 10.1002/2015GC005929

    CrossRef Google Scholar

    [4] Hun C A, Peng J L, Chen J C. Late Pleistocene pelagic sedimentation in the West Philippine Basin [J]. Journal of Southeast Asian Earth Sciences, 1992, 7(2-3): 159-164. doi: 10.1016/0743-9547(92)90050-L

    CrossRef Google Scholar

    [5] Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust: Source and transport agent of Asian dust [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19): 11492-11504. doi: 10.1002/2014JD022025

    CrossRef Google Scholar

    [6] 李铁刚, 熊志方, 翟滨. 低纬度西太平洋硅藻席沉积与碳循环[M]. 北京: 海洋出版社, 2015: 1-158.

    Google Scholar

    LI Tiegang, XIONG Zhifang, ZHAI Bin. Laminated Diatom Mat Deposits from the Low-Latitude Western Pacific Linked to Global Carbon Cycle[M]. Beijing: China Ocean Press, 2015: 1-158.

    Google Scholar

    [7] Xu Z K, Li T G, Wan S M, et al. Geochemistry of rare earth elements in the mid-late Quaternary sediments of the western Philippine Sea and their paleoenvironmental significance [J]. Science China Earth Sciences, 2014, 57(4): 802-812. doi: 10.1007/s11430-013-4786-z

    CrossRef Google Scholar

    [8] Qiu B. Kuroshio and oyashio currents[M]//Steele J H. Encyclopedia of Ocean Sciences. London: Elsevier Science Ltd., 2001: 1413-1425.

    Google Scholar

    [9] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023

    CrossRef Google Scholar

    [10] Wan S M, Yu Z J, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326-328: 152-159. doi: 10.1016/j.palaeo.2012.02.015

    CrossRef Google Scholar

    [11] Jiang F Q, Zhou Y, Nan Q Y, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea over the last 220 kyr as inferred from grain size and Sr-Nd isotopes [J]. Journal of Geophysical Research: Oceans, 2016, 121(9): 6911-6928. doi: 10.1002/2016JC012000

    CrossRef Google Scholar

    [12] 万世明, 徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 2017, 48(6):1208-1219

    Google Scholar

    WAN Shiming, XU Zhaokai. Research progress on eolian dust records in the west pacific [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219.

    Google Scholar

    [13] Jiang F Q, Frank M, Li T G, et al. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1538-1551. doi: 10.1002/ggge.20116

    CrossRef Google Scholar

    [14] Wan S M, Sun Y B, Nagashima K. Asian dust from land to sea: processes, history and effect from modern observation to geological records [J]. Geological Magazine, 2020, 157(5): 701-706. doi: 10.1017/S0016756820000333

    CrossRef Google Scholar

    [15] Ge H M, Zhang C L. Advances in GDGT research in Chinese marginal seas: A review [J]. Science China Earth Sciences, 2016, 59(6): 1173-1186. doi: 10.1007/s11430-015-5242-z

    CrossRef Google Scholar

    [16] Schouten S, Hopmans E C, Damsté J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review [J]. Organic Geochemistry, 2013, 54: 19-61. doi: 10.1016/j.orggeochem.2012.09.006

    CrossRef Google Scholar

    [17] Pearson A, Ingalls A E. Assessing the use of archaeal lipids as marine environmental proxies [J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 359-384. doi: 10.1146/annurev-earth-050212-123947

    CrossRef Google Scholar

    [18] Schouten S, Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters, 2002, 204(1-2): 265-274. doi: 10.1016/S0012-821X(02)00979-2

    CrossRef Google Scholar

    [19] Li D W, Zhao M X, Tian J, et al. Comparison and implication of TEX86 and UK’ 37 temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376: 213-223. doi: 10.1016/j.palaeo.2013.02.031

    CrossRef Google Scholar

    [20] Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids [J]. Earth and Planetary Science Letters, 2004, 224(1-2): 107-116. doi: 10.1016/j.jpgl.2004.05.012

    CrossRef Google Scholar

    [21] Pelejero C, Grimalt J O, Heilig S, et al. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr [J]. Paleoceanography and Paleoclimatology, 1999, 14(2): 224-231.

    Google Scholar

    [22] Ding Z L, Liu T S, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800, 000 years [J]. Quaternary Research, 1995, 44(2): 149-159. doi: 10.1006/qres.1995.1059

    CrossRef Google Scholar

    [23] Kim J H, Van Der Meer J, Schouten S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4639-4654. doi: 10.1016/j.gca.2010.05.027

    CrossRef Google Scholar

    [24] Yamamoto M, Shimamoto A, Fukuhara T, et al. Source, settling and degradation of branched glycerol dialkyl glycerol tetraethers in the marine water column [J]. Geochimica et Cosmochimica Acta, 2016, 191: 239-254. doi: 10.1016/j.gca.2016.07.014

    CrossRef Google Scholar

    [25] Winckler G, Anderson R F, Fleisher M Q, et al. Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica [J]. Science, 2008, 320(5872): 93-96. doi: 10.1126/science.1150595

    CrossRef Google Scholar

    [26] Xu Z K, Li T G, Yu X K, et al. Sediment provenance and evolution of the East Asian winter monsoon since 700 ka recorded by major elements in the West Philippine Sea [J]. Chinese Science Bulletin, 2012, 58(9): 1044-1052.

    Google Scholar

    [27] De Jonge C, Stadnitskaia A, Hopmans E C, et al. Drastic changes in the distribution of branched tetraether lipids in suspended matter and sediments from the Yenisei River and Kara Sea (Siberia): Implications for the use of brGDGT-based proxies in coastal marine sediments [J]. Geochimica et Cosmochimica Acta, 2015, 165: 200-225. doi: 10.1016/j.gca.2015.05.044

    CrossRef Google Scholar

    [28] Xiao W J, Wang Y H, Zhou S Z, et al. Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs [J]. Biogeosciences, 2016, 13(20): 5883-5894. doi: 10.5194/bg-13-5883-2016

    CrossRef Google Scholar

    [29] Liu XL, Zhu C, Wakeham SG, et al. In situ production of branched glycerol dialkyl glycerol tetraethers in anoxic marine water columns [J]. Marine Chemistry, 2014, 166: 1-8. doi: 10.1016/j.marchem.2014.08.008

    CrossRef Google Scholar

    [30] Zhu C, Weijers J W H, Wagner T, et al. Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin [J]. Organic Geochemistry, 2011, 42(4): 376-386. doi: 10.1016/j.orggeochem.2011.02.002

    CrossRef Google Scholar

    [31] Damsté J S S. Spatial heterogeneity of sources of branched tetraethers in shelf systems: The geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia) [J]. Geochimica et Cosmochimica Acta, 2016, 186: 13-31. doi: 10.1016/j.gca.2016.04.033

    CrossRef Google Scholar

    [32] Weijers J W H, Schouten S, Van Den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils [J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703-713. doi: 10.1016/j.gca.2006.10.003

    CrossRef Google Scholar

    [33] Peterse F, Schouten S, Van Der Meer J, et al. Distribution of branched tetraether lipids in geothermally heated soils: Implications for the MBT/CBT temperature proxy [J]. Organic Geochemistry, 2009, 40(2): 201-205. doi: 10.1016/j.orggeochem.2008.10.010

    CrossRef Google Scholar

    [34] Weijers J W H, Schouten S, Spaargaren O C, et al. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index [J]. Organic Geochemistry, 2006, 37(12): 1680-1693. doi: 10.1016/j.orggeochem.2006.07.018

    CrossRef Google Scholar

    [35] 陈敏, 兰彬斌, 沈林南, 等. 西菲律宾海盆表层沉积硅藻分布特征[J]. 微体古生物学报, 2014, 31(4):321-334

    Google Scholar

    CHEN Min, LAN Binbin, SHEN Linnan, et al. Characteristics of diatom distribution in the surface sediments of the Western Philippine Basin [J]. Acta Micropalaeontologica Sinica, 2014, 31(4): 321-334.

    Google Scholar

    [36] De Deckker P, Gingele F X. On the occurrence of the giant diatom Ethmodiscus rex in an 80-ka record from a deep-sea core, southeast of Sumatra, Indonesia: implications for tropical palaeoceanography [J]. Marine Geology, 2002, 183(1-4): 31-43. doi: 10.1016/S0025-3227(01)00252-3

    CrossRef Google Scholar

    [37] Harrison K G. Role of increased marine silica input on paleo-pCO2 levels [J]. Paleoceanography and Paleoclimatology, 2000, 15(3): 292-298.

    Google Scholar

    [38] Nozaki Y, Yamamoto Y. Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced “alkalinity pump” hypothesis [J]. Global Biogeochemical Cycles, 2001, 15(3): 555-567. doi: 10.1029/2000GB001309

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(2061) PDF downloads(69) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint