2021 Vol. 41, No. 1
Article Contents

BAI Yongliang, YANG Huiliang, ZHANG Diya, RONG Yilin, DONG Dongdong, WU Shiguo. Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 158-165. doi: 10.16562/j.cnki.0256-1492.2020073001
Citation: BAI Yongliang, YANG Huiliang, ZHANG Diya, RONG Yilin, DONG Dongdong, WU Shiguo. Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 158-165. doi: 10.16562/j.cnki.0256-1492.2020073001

Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism

More Information
  • Numerical simulations suggest that plateau/ridge subduction and back-arc spreading would influence magmatism and island-arc crustal growth subduction-zone. In this paper, we take the Izu-Bonin-Mariana (IBM) subduction zone paper as a case to test the above observation. Moho depth variations are estimated based on Inversed gravity anomaly by satellite altimetry and density modelling for different layers, and the trend of the Moho inversion result can well match the seismic interpretations. Crustal thickness variations are mapped based on gravity-inversed Moho, open-source topography and bathymetry as well as sediment thickness. The island-arc crustal volume variations along strike indicate that (1) the subduction of the Ogasawara Plateau and the Dutton Ridge necked and thickened the arc crust, and they also increased the arc crust volume, (2) the opening of the Marian Trough reduced substantially the island-arc crustal growth.

  • 加载中
  • [1] Albarède F. The growth of continental crust [J]. Tectonophysics, 1998, 296(1-2): 1-14. doi: 10.1016/S0040-1951(98)00133-4

    CrossRef Google Scholar

    [2] Reymer A, Schubert G. Phanerozoic addition rates to the continental crust and crustal growth [J]. Tectonics, 1984, 3(1): 63-77. doi: 10.1029/TC003i001p00063

    CrossRef Google Scholar

    [3] Taylor S R. The origin and growth of continents [J]. Tectonophysics, 1967, 4(1): 17-34. doi: 10.1016/0040-1951(67)90056-X

    CrossRef Google Scholar

    [4] Suyehiro K, Takahashi N, Ariie Y, et al. Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc [J]. Science, 1996, 272(5260): 390-392. doi: 10.1126/science.272.5260.390

    CrossRef Google Scholar

    [5] Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 4697-4707.

    Google Scholar

    [6] Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation [J]. Earth and Planetary Science Letters, 1998, 163(1-4): 361-379. doi: 10.1016/S0012-821X(98)00142-3

    CrossRef Google Scholar

    [7] Van Keken P E, Hacker B R, Syracuse E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01401.

    Google Scholar

    [8] Grove T L, Till C B, Lev E, et al. Kinematic variables and water transport control the formation and location of arc volcanoes [J]. Nature, 2009, 459(7247): 694-697. doi: 10.1038/nature08044

    CrossRef Google Scholar

    [9] 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682 doi: 10.1007/s11430-015-5258-4

    CrossRef Google Scholar

    ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-682. doi: 10.1007/s11430-015-5258-4

    CrossRef Google Scholar

    [10] Perrin A, Goes S, Prytulak J, et al. Mantle wedge temperatures and their potential relation to volcanic arc location [J]. Earth and Planetary Science Letters, 2018, 501: 67-77. doi: 10.1016/j.jpgl.2018.08.011

    CrossRef Google Scholar

    [11] Turner S J, Langmuir C H, Katz R F, et al. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure [J]. Nature Geoscience, 2016, 9(10): 772-776. doi: 10.1038/ngeo2788

    CrossRef Google Scholar

    [12] Peacock S M. Thermal and petrologic structure of subduction zones[M]//Bebout G E, Scholl D W, Kirby S H, et al. Subduction: Top to Bottom. Washington, D.C.: Geophysical Monograph Series, 1996.

    Google Scholar

    [13] Magni V. The effects of back-arc spreading on arc magmatism [J]. Earth and Planetary Science Letters, 2019, 519: 141-151. doi: 10.1016/j.jpgl.2019.05.009

    CrossRef Google Scholar

    [14] Mason W G, Moresi L, Betts P G, et al. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones [J]. Tectonophysics, 2010, 483(1-2): 71-79. doi: 10.1016/j.tecto.2009.08.021

    CrossRef Google Scholar

    [15] Wallace L M, McCaffrey R, Beavan J, et al. Rapid microplate rotations and backarc rifting at the transition between collision and subduction [J]. Geology, 2005, 33(11): 857-860. doi: 10.1130/G21834.1

    CrossRef Google Scholar

    [16] Harmon N, Blackman D K. Effects of plate boundary geometry and kinematics on mantle melting beneath the back-arc spreading centers along the Lau Basin [J]. Earth and Planetary Science Letters, 2010, 298(3-4): 334-346. doi: 10.1016/j.jpgl.2010.08.004

    CrossRef Google Scholar

    [17] Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure [J]. Science, 2014, 346(6205): 65-67. doi: 10.1126/science.1258213

    CrossRef Google Scholar

    [18] Bai Y L, Li M, Wu S G, et al. Upper mantle density modelling for large-scale Moho gravity inversion: case study on the Atlantic Ocean [J]. Geophysical Journal International, 2019, 216(3): 2134-2147. doi: 10.1093/gji/ggz003

    CrossRef Google Scholar

    [19] Bai Y L, Gui Z, Li M, et al. Crustal thickness over the NW Pacific and its tectonic implications [J]. Journal of Asian Earth Sciences, 2019, 185: 104050. doi: 10.1016/j.jseaes.2019.104050

    CrossRef Google Scholar

    [20] Wang T T, Lin J, Tucholke B, et al. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q0AE02.

    Google Scholar

    [21] Stern R J, Bloomer S H. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs [J]. GSA Bulletin, 1992, 104(12): 1621-1636. doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2

    CrossRef Google Scholar

    [22] Sdrolias M, Roest W R, Müller R D. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins [J]. Tectonophysics, 2004, 394(1-2): 69-86. doi: 10.1016/j.tecto.2004.07.061

    CrossRef Google Scholar

    [23] Okino K, Ohara Y, Kasuga S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins [J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537

    CrossRef Google Scholar

    [24] Ishizuka O, Hickey-Vargas R, Arculus R J, et al. Age of Izu–Bonin–Mariana arc basement [J]. Earth and Planetary Science Letters, 2018, 481: 80-90. doi: 10.1016/j.jpgl.2017.10.023

    CrossRef Google Scholar

    [25] Arculus R J, Ishizuka O, Bogus K A, et al. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc [J]. Nature Geoscience, 2015, 8(9): 728-733. doi: 10.1038/ngeo2515

    CrossRef Google Scholar

    [26] Reagan M K, Pearce J A, Petronotis K, et al. Subduction initiation and ophiolite crust: new insights from IODP drilling [J]. International Geology Review, 2017, 59(11): 1439-1450. doi: 10.1080/00206814.2016.1276482

    CrossRef Google Scholar

    [27] 吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3):677-692 doi: 10.3969/j.issn.0563-5020.2013.03.008

    CrossRef Google Scholar

    WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate [J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008

    CrossRef Google Scholar

    [28] Hickey-Vargas R. Basalt and tonalite from the Amami Plateau, northern West Philippine Basin: New Early Cretaceous ages and geochemical results, and their petrologic and tectonic implications [J]. Island Arc, 2005, 14(4): 653-665. doi: 10.1111/j.1440-1738.2005.00474.x

    CrossRef Google Scholar

    [29] Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis[DB/OL]. National Geophysical Data Center, NOAA, 2009. http://apdrc.soest.hawaii.edu/datadoc/etopo1.php.

    Google Scholar

    [30] Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.

    Google Scholar

    [31] Clouard V, Bonneville A. Ages of seamounts, islands, and plateau on the pacific plate[M]//Foulger G R, Natland J H, Presnall D C, et al. Plates, Plumes and Paradigms. Washington, DC: Geological Society of America, 2005.

    Google Scholar

    [32] Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2): B02401.

    Google Scholar

    [33] Straume E O, Gaina C, Medvedev S, et al. Globsed: updated total sediment thickness in the world's oceans [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(4): 1756-1772. doi: 10.1029/2018GC008115

    CrossRef Google Scholar

    [34] Tenzer R, Pavel N, Vladislav G. The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of seawater density [J]. Marine Geodesy, 2012, 35(2): 198-220. doi: 10.1080/01490419.2012.670592

    CrossRef Google Scholar

    [35] Sawyer D S. Total tectonic subsidence: A parameter for distinguishing crust type at the U.S. atlantic continental margin [J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B9): 7751-7769. doi: 10.1029/JB090iB09p07751

    CrossRef Google Scholar

    [36] Takahashi N, Kodaira S, Klemperer S L, et al. Crustal structure and evolution of the Mariana intra-oceanic island arc [J]. Geology, 2007, 35(3): 203-206. doi: 10.1130/G23212A.1

    CrossRef Google Scholar

    [37] Chappell A R, Kusznir N J. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction [J]. Geophysical Journal International, 2008, 174(1): 1-13. doi: 10.1111/j.1365-246X.2008.03803.x

    CrossRef Google Scholar

    [38] Bai Y L, Williams S E, Müller R D, et al. Mapping crustal thickness using marine gravity data: Methods and uncertainties [J]. Geophysics, 2014, 79(2): G27-G36. doi: 10.1190/geo2013-0270.1

    CrossRef Google Scholar

    [39] Bai Y L, Dong D D, Kirby J F, et al. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation: a case study [J]. Geophysical Journal International, 2018, 214(1): 623-634. doi: 10.1093/gji/ggy162

    CrossRef Google Scholar

    [40] Isaak D G, Anderson O L, Goto T, et al. Elasticity of single-crystal forsterite measured to 1700 K [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B5): 5895-5906. doi: 10.1029/JB094iB05p05895

    CrossRef Google Scholar

    [41] Forte A M, Woodward R L, Dziewonski A M. Joint inversions of seismic and geodynamic data for models of three—dimensional mantle heterogeneity [J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 21857-21877. doi: 10.1029/94JB01467

    CrossRef Google Scholar

    [42] Schaeffer A J, Lebedev S. Global shear speed structure of the upper mantle and transition zone [J]. Geophysical Journal International, 2013, 194(1): 417-449. doi: 10.1093/gji/ggt095

    CrossRef Google Scholar

    [43] Parker R L. The rapid calculation of potential anomalies [J]. Geophysical Journal of the Royal Astronomical Society, 1973, 31(4): 447-455. doi: 10.1111/j.1365-246X.1973.tb06513.x

    CrossRef Google Scholar

    [44] Takahashi N, Kodaira S, Tatsumi Y, et al. Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(9): Q09X08.

    Google Scholar

    [45] Nishizawa A, Kaneda K, Oikawa M. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate [J]. Earth, Planets and Space, 2016, 68: 30. doi: 10.1186/s40623-016-0407-3

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(3591) PDF downloads(120) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint