2021 Vol. 41, No. 4
Article Contents

DONG Lingyu, SHAN Rui, LIU Huimin, YU Deshui, DU Kai. Shipwreck identification with side scan sonar image based on fractal texture[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 232-239. doi: 10.16562/j.cnki.0256-1492.2020070301
Citation: DONG Lingyu, SHAN Rui, LIU Huimin, YU Deshui, DU Kai. Shipwreck identification with side scan sonar image based on fractal texture[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 232-239. doi: 10.16562/j.cnki.0256-1492.2020070301

Shipwreck identification with side scan sonar image based on fractal texture

More Information
  • In order to improve the accuracy and efficiency for recognition of underwater targets, fractal texture features including box dimension, blanket dimension and multifractal spectrum are calculated by texture feature extraction algorithm with side scan sonar images, and the shipwreck identification procedure based on Adaboost cascade classifier is constructed. The shipwreck recognition experiments have been carried out, and the results are compared. Research shows that the recognition method based on fractal texture features comprehensively considers the global and local texture features of the image, and does not rely on manual selection of threshold parameters and feature vectors, which can improve the accuracy and efficiency of target recognition.

  • 加载中
  • [1] 赵建虎, 王爱学. 精密海洋测量与数据处理技术及其应用进展[J]. 海洋测绘, 2015, 35(6):1-7 doi: 10.3969/j.issn.1671-3044.2015.06.001

    CrossRef Google Scholar

    ZHAO Jianhu, WANG Aixue. Precise marine surveying and data processing technology and their progress of application [J]. Hydrographic Surveying and Charting, 2015, 35(6): 1-7. doi: 10.3969/j.issn.1671-3044.2015.06.001

    CrossRef Google Scholar

    [2] 赵建虎, 王爱学, 王晓, 等. 侧扫声纳条带图像分段拼接方法研究[J]. 武汉大学学报: 信息科学版, 2013, 38(9):1034-1038

    Google Scholar

    ZHAO Jianhu, WANG Aixue, WANG Xiao, et al. A segmented mosaic method for side scan sonar strip images using corresponding features [J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1034-1038.

    Google Scholar

    [3] Rutledge J, Yuan W T, Wu J, et al. Intelligent shipwreck search using autonomous underwater vehicles[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: IEEE, 2018: 6175-6182.

    Google Scholar

    [4] 许文海, 续元君, 董丽丽, 等. 基于水平集和支持向量机的图像声呐目标识别[J]. 仪器仪表学报, 2012, 33(1):49-55 doi: 10.3969/j.issn.0254-3087.2012.01.008

    CrossRef Google Scholar

    XU Wenhai, XU Yuanjun, DONG Lili, et al. Level-set and SVM based target recognition of image sonar [J]. Chinese Journal of Scientific Instrument, 2012, 33(1): 49-55. doi: 10.3969/j.issn.0254-3087.2012.01.008

    CrossRef Google Scholar

    [5] 卞红雨, 陈奕名, 张志刚, 等. 像素重要性测量特征下的侧扫声呐目标检测[J]. 声学学报, 2019, 44(3):353-359

    Google Scholar

    BIAN Hongyu, CHEN Yiming, ZHANG Zhigang, et al. Target detection algorithm in side-scan sonar image based on pixel importance measurement [J]. Acta Acustica, 2019, 44(3): 353-359.

    Google Scholar

    [6] 郭军, 马金凤, 王爱学. 基于SVM算法和GLCM的侧扫声纳影像分类研究[J]. 测绘与空间地理信息, 2015, 38(3):60-63 doi: 10.3969/j.issn.1672-5867.2015.03.020

    CrossRef Google Scholar

    GUO Jun, MA Jinfeng, WANG Aixue. Study of side scan sonar image classification based on SVM and gray level co-occurrence matrix [J]. Geomatics & Spatial Information Technology, 2015, 38(3): 60-63. doi: 10.3969/j.issn.1672-5867.2015.03.020

    CrossRef Google Scholar

    [7] 高程程, 惠晓威. 基于灰度共生矩阵的纹理特征提取[J]. 计算机系统应用, 2010, 19(6):195-198 doi: 10.3969/j.issn.1003-3254.2010.06.047

    CrossRef Google Scholar

    GAO Chengcheng, HUI Xiaowei. GLCM-based texture feature extraction [J]. Computer Systems & Applications, 2010, 19(6): 195-198. doi: 10.3969/j.issn.1003-3254.2010.06.047

    CrossRef Google Scholar

    [8] 景军锋, 张缓缓, 李鹏飞, 等. LBP和Tamura纹理特征方法融合的织物疵点分类算法[J]. 计算机工程与应用, 2012, 48(23):155-160 doi: 10.3778/j.issn.1002-8331.2012.23.035

    CrossRef Google Scholar

    JING Junfeng, ZHANG Huanhuan, LI Pengfei, et al. Fabric defect classification based on local binary patterns and Tamura texture feature method [J]. Computer Engineering and Applications, 2012, 48(23): 155-160. doi: 10.3778/j.issn.1002-8331.2012.23.035

    CrossRef Google Scholar

    [9] 王瑞. 多重分形及其在图像识别中的应用研究[D]. 西北大学硕士学位论文, 2010.

    Google Scholar

    WANG Rui. Multifractal and its application in image recognition[D]. Master Dissertation of Northwest University, 2010.

    Google Scholar

    [10] 徐文海. 基于分形理论的遥感影像纹理分析与分类研究[D]. 中南大学硕士学位论文, 2010.

    Google Scholar

    XU Wenhai. Texture analysis and classification of remote sensing image based on fractal theory[D]. Master Dissertation of Central South University, 2010.

    Google Scholar

    [11] Femmam S. Texture classification approach based on 2D multifractal analysis[Z]. SPIE Newsroom, 2015.

    Google Scholar

    [12] Lopes R, Betrouni N. Fractal and multifractal analysis: a review [J]. Medical Image Analysis, 2009, 13(4): 634-649. doi: 10.1016/j.media.2009.05.003

    CrossRef Google Scholar

    [13] Don S, Chung D, Revathy K, et al. A neural network approach to mammogram image classification using fractal features[C]//2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Shanghai, China: IEEE, 2009: 444-447.

    Google Scholar

    [14] Cao W L, Shi Z K, Feng J H. Traffic image classification method based on fractal dimension[C]//2006 5th IEEE International Conference on Cognitive Informatics. Beijing, China: IEEE, 2006: 903-907.

    Google Scholar

    [15] 李攀峰, 赵铁虎, 张晓波, 等. 山东半岛遥感解译断裂分形研究[J]. 海洋地质与第四纪地质, 2015, 35(4):105-112

    Google Scholar

    LI Panfeng, ZHAO Tiehu, ZHANG Xiaobo, et al. Fractal research of remote sensing linear faults in Shandong peninsula [J]. Marine Geology & Quaternary Geology, 2015, 35(4): 105-112.

    Google Scholar

    [16] Grassberger P. Generalized dimensions of strange attractors [J]. Physics Letters A, 1983, 97(6): 227-230. doi: 10.1016/0375-9601(83)90753-3

    CrossRef Google Scholar

    [17] Falconer K J. Fractal Geometry - Mathematical Foundations and Applications[M]. Chichester: Wiley, 1990.

    Google Scholar

    [18] Gagnepain J J, Roques-Carmes C. Fractal approach to two-dimensional and three-dimensional surface roughness [J]. Wear, 1986, 109(1-4): 119-126. doi: 10.1016/0043-1648(86)90257-7

    CrossRef Google Scholar

    [19] Kisan S, Mishra S, Bhattacharjee G, et al. Analytical Study on Fractal Dimension-A Review[C]//2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE). IEEE, 2018: 380-384.

    Google Scholar

    [20] 周江, 印萍, 程荡敌, 等. 基于GIS和分形理论研究的海岸线图像和分维以及长度[J]. 海洋地质与第四纪地质, 2008, 28(4):65-71

    Google Scholar

    ZHOU Jiang, YIN Ping, CHENG Dangdi, et al. Research on the fractal simulation image and the fractal dimension and length of coastline based on GIS and fractal theory [J]. Marine Geology & Quaternary Geology, 2008, 28(4): 65-71.

    Google Scholar

    [21] 李会方. 多重分形理论及其在图象处理中应用的研究[D]. 西北工业大学博士学位论文, 2004.

    Google Scholar

    LI Huifang. The study on multifractal theory and application in image processing[D]. Doctor Dissertation of Northwestern Polytechnical University, 2004.

    Google Scholar

    [22] Turiel A, Del Pozo A. Reconstructing images from their most singular fractal manifold [J]. IEEE Transactions on Image Processing, 2002, 11(4): 345-350. doi: 10.1109/TIP.2002.999668

    CrossRef Google Scholar

    [23] Turiel A, Parga N. The multifractal structure of contrast changes in natural images: from sharp edges to textures [J]. Neural Computation, 2000, 12(4): 763-793. doi: 10.1162/089976600300015583

    CrossRef Google Scholar

    [24] Potlapalli H, Luo R C. Fractal-based classification of natural textures [J]. IEEE Transactions on Industrial Electronics, 1998, 45(1): 142-150. doi: 10.1109/41.661315

    CrossRef Google Scholar

    [25] Mahmood Z, Ali T, Khattak S. Automatic player detection and recognition in images using AdaBoost[C]//Proceedings of 2012 9th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Islamabad, Pakistan: IEEE, 2012: 64-69.

    Google Scholar

    [26] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 18-20.

    Google Scholar

    LI Hang. Statistical Learning Methods[M]. Beijing: Tsinghua University Press, 2012: 18-20.

    Google Scholar

    [27] Scoville D. Steamer Homer Warren[Z/OL]. https://www.shipwreckworld.com/articles/side-scan-sonar-images/.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(1557) PDF downloads(42) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint