2021 Vol. 41, No. 3
Article Contents

MING Jun, WANG Jianli, LIU Jianhui, WANG Zhiyong, LI Jieli, LIU Guochang. Separation of seismic diffraction wave and its influencing factors in complex fault blocks[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 212-219. doi: 10.16562/j.cnki.0256-1492.2020070201
Citation: MING Jun, WANG Jianli, LIU Jianhui, WANG Zhiyong, LI Jieli, LIU Guochang. Separation of seismic diffraction wave and its influencing factors in complex fault blocks[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 212-219. doi: 10.16562/j.cnki.0256-1492.2020070201

Separation of seismic diffraction wave and its influencing factors in complex fault blocks

  • The seismic diffraction wave is the seismic responses of subsurface small-scale discontinuous structures, such as fractures, faults, karst caves and pinching-out strata. Correct recognition of diffraction wave is of great significance for exploration of complex fault block oil and gas fields. Based on the characteristics of diffracted and reflected wave signals, a method for separation of diffracted wave is developed in this paper on the basis of plane wave prediction and the analysis of the influences of noise and plane wave prediction filter parameters. The plane wave prediction method can separate seismic reflections and diffraction waves by predicting the event of reflection wave with better continuity and retain the event of discontinuous diffraction wave with greater bending degree through dip estimation. The comparison of simulation data and actual data shows that noise seriously affects the separation of diffracted wave, and the separation result will be inaccurate if the noise is too large; the noise and false image will be introduced if the smooth radius of plane wave prediction filter is too small, and the separation of diffracted wave will not be complete if the smooth radius is too large, and the diffracted wave response of small fault block is difficult to be separated.

  • 加载中
  • [1] Bansal R, Imhof M G. Diffraction enhancement in prestack seismic data [J]. Geophysics, 2005, 70(3): V73-V79. doi: 10.1190/1.1926577

    CrossRef Google Scholar

    [2] Khaidukov V, Landa E, Moser T J. Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution [J]. Geophysics, 2004, 69(6): 1478-1490. doi: 10.1190/1.1836821

    CrossRef Google Scholar

    [3] 刘玉金, 李振春, 黄建平, 等. 绕射波叠前时间偏移速度分析及成像[J]. 地球物理学进展, 2013, 28(6):3022-3029

    Google Scholar

    LIU Yujin, LI Zhenchun, HUANG Jianping, et al. Prestack time migration velocity analysis and imaging of seismic diffractions [J]. Progress in Geophysics, 2013, 28(6): 3022-3029.

    Google Scholar

    [4] Kanasewich E R, Phadke S M. Imaging discontinuities on seismic sections [J]. Geophysics, 1988, 53(3): 334-345. doi: 10.1190/1.1442467

    CrossRef Google Scholar

    [5] Claerbout J F. Earth Soundings Analysis: Processing Versus Inversion[M]. Cambridge, MA: Blackwell Scientific Publications Inc., 1992.

    Google Scholar

    [6] Fomel S. Applications of plane-wave destruction filters [J]. Geophysics, 2002, 67(6): 1946-1960. doi: 10.1190/1.1527095

    CrossRef Google Scholar

    [7] Nowak E J, Imhof M G. Diffractor localization via weighted Radon transforms[C]//74th SEG Annual Meeting. Denver, Colorado, USA: SEG, 2004: 2108-2111.

    Google Scholar

    [8] Berkovitch A, Belfer I, Hassin Y, et al. Diffraction imaging by multifocusing [J]. Geophysics, 2009, 74(6): WCA75-WCA81. doi: 10.1190/1.3198210

    CrossRef Google Scholar

    [9] Koren Z, Ravve I, Levy R. Specular-diffraction imaging by directional angle decomposition[C]//72nd EAGE Conference and Exhibition. Barcelona, Spain: EAGE, 2010.

    Google Scholar

    [10] Klokov A, Baina R, Landa E, et al. Diffraction imaging for fracture detection: synthetic case study[C]//2010 SEG Annual Meeting. Denver, Colorado: SEG, 2010: 3354-3358.

    Google Scholar

    [11] Moser T J, Howard C B. Diffraction imaging in depth [J]. Geophysical Prospecting, 2008, 56(5): 627-641. doi: 10.1111/j.1365-2478.2007.00718.x

    CrossRef Google Scholar

    [12] Decker L, Klokov A, Fomel S. Comparison of seismic diffraction imaging techniques: plane wave destruction versus apex destruction[C]//2013 SEG Annual Meeting. Houston, Texas: SEG, 2013: 4054-4059.

    Google Scholar

    [13] 赵娟娟, 李德春, 匡伟, 等. F-K滤波方法分离地震绕射波和反射波[J]. 能源技术与理论, 2010(3):16-17

    Google Scholar

    ZHAO Juanjuan, LI Dechun, KUANG Wei, et al. Separation of diffractions and reflections by means of F-K filtering method [J]. Energy Technology and Management, 2010(3): 16-17.

    Google Scholar

    [14] 马永生. VSP中绕射波形态的理论分析[J]. 石油物探, 1991, 30(1):64-71

    Google Scholar

    MA Yongsheng. Theoretical analysis of diffraction wave pattern in VSP [J]. Geophysical Prospecting for Petroleum, 1991, 30(1): 64-71.

    Google Scholar

    [15] 黄建平, 李振春, 孔雪, 等. 基于PWD的绕射波波场分离成像方法综述[J]. 地球物理学进展, 2012, 27(6):2499-2510

    Google Scholar

    HUANG Jianping, LI Zhenchun, KONG Xue, et al. The review of the wave field separation method about reflection and diffraction based on the PWD [J]. Progress in Geophysics, 2012, 27(6): 2499-2510.

    Google Scholar

    [16] 朱生旺, 李佩, 宁俊瑞. 局部倾角滤波和预测反演联合分离绕射波[J]. 地球物理学报, 2013, 56(1):280-288

    Google Scholar

    ZHU Shengwang, LI Pei, NING Junrui. Reflection/diffraction separation with a hybrid method of local dip filter and prediction inversion [J]. Chinese Journal of Geophysics, 2013, 56(1): 280-288.

    Google Scholar

    [17] 蒋波, 赵金玉, 邬达理, 等. 基于反射波层拉平的绕射波分离与成像方法[J]. 石油物探, 2014, 53(2):137-141, 148

    Google Scholar

    JIANG Bo, ZHAO Jinyu, WU Dali, et al. A method for diffraction wave separation and imaging based on horizon-flattening of reflection waves [J]. Geophysical Prospecting for Petroleum, 2014, 53(2): 137-141, 148.

    Google Scholar

    [18] 李正伟, 张剑锋, 刘伟. 基于倾角—偏移距域道集的绕射波成像[J]. 地球物理学报, 2018, 61(4):1447-1459

    Google Scholar

    LI Zhengwei, ZHANG Jianfeng, LIU Wei. Diffraction imaging using dip-angle and offset gathers [J]. Chinese Journal of Geophysics, 2018, 61(4): 1447-1459.

    Google Scholar

    [19] Decker L, Merzlikin D, Fomel S. Diffraction imaging and time-migration velocity analysis using oriented velocity continuation [J]. Geophysics, 2017, 82(2): U25-U35. doi: 10.1190/geo2016-0141.1

    CrossRef Google Scholar

    [20] Merzlikin D, Fomel S. Analytical path-summation imaging of seismic diffractions [J]. Geophysics, 2017, 82(1): S51-S59. doi: 10.1190/geo2016-0140.1

    CrossRef Google Scholar

    [21] Decker L, Janson X, Fomel S. Carbonate reservoir characterization using seismic diffraction imaging [J]. Interpretation, 2015, 3(1): SF21-SF30. doi: 10.1190/INT-2014-0081.1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(1854) PDF downloads(42) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint