2021 Vol. 41, No. 2
Article Contents

LIU Jie, LIU Lihua, WU Nengyou, WU Daidai, JIN Guangrong, YANG Rui. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. doi: 10.16562/j.cnki.0256-1492.2020061801
Citation: LIU Jie, LIU Lihua, WU Nengyou, WU Daidai, JIN Guangrong, YANG Rui. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. doi: 10.16562/j.cnki.0256-1492.2020061801

Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum

More Information
  • The evolutionary history of the gas hydrate stability zone (GHSZ) in the Dongsha deep water area since the last glacial maximum (LGM) is simulated and predicted using the CSMHYD program, and the fluctuations of sea level and bottom water temperature and their effects on the thickness of gas hydrate stability zone as well as the effects of hydrate decomposition on environment are carefully investigated and discussed. The results show that: (1) Gas hydrate could form in the sea area at a water depth more than 595 m; the current theoretical thickness of GHSZ is 245 m on average, and the maximum could be over 380 m which is located in the eastern part of the study area. Another area with large thickness is found at the juncture of the Dongsha continental slope and the Taiwan shoal continental slope. (2) The thickness of GHSZ in the Dongsha sea area has changed in an asymmetrical pattern since the LGM. It can be divided chronologically into five complete cycles, named TC1, TC2, TC3, TC4 and TC5 respectively. The thinning half-cycles are longer in time than those of the thickening ones. The thickness of GHSZ in cycles of TC1-TC4 is controlled by sea level fluctuation, while the thickness of cycle TC5 mainly controlled by sea bottom temperature. (3) The seabed temperature and sea level changes bring stronger effects on GHSZ thickness in the intermediate water area rather than in the deep water area. Meanwhile, the pressure effect is relatively obvious in the intermediate water depth area. The influence of sea level variation on GHSZ in the deep water area is limited. The abnormal decrease in CaCO3 content in the Dongsha sea area is possibly due to the acidification caused by the methane released from gas hydrates dissociation.

  • 加载中
  • [1] Majorowicz J, Safanda J, Osadetz K. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada [J]. Climate of the Past, 2012, 8(2): 667-682. doi: 10.5194/cp-8-667-2012

    CrossRef Google Scholar

    [2] Handwerger A L, Rempel A W, Skarbek R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429-2445. doi: 10.1002/2016GC006706

    CrossRef Google Scholar

    [3] Riboulot V, Ker S, Sultan N, et al. Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea [J]. Nature Communications, 2018, 9(1): 117. doi: 10.1038/s41467-017-02271-z

    CrossRef Google Scholar

    [4] Serie C, Huuse M, Schødt N H. Gas hydrate pingoes: Deep seafloor evidence of focused fluid flow on continental margins [J]. Geology, 2012, 40(3): 207-210. doi: 10.1130/G32690.1

    CrossRef Google Scholar

    [5] 叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学-中国地质大学学报, 2013, 38(6):1299-1308 doi: 10.3799/dqkx.2013.127

    CrossRef Google Scholar

    YE Liming, CHU Fengyou, GE Qian, et al. A rapid gas hydrate dissociation in the northern South China Sea since the Late Younger Dryas [J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1299-1308. doi: 10.3799/dqkx.2013.127

    CrossRef Google Scholar

    [6] 陈芳, 陆红锋, 刘坚, 等. 南海东北部陆坡天然气水合物多期次分解的沉积地球化学响应[J]. 地球科学-中国地质大学学报, 2016, 41(10):1619-1629 doi: 10.3799/dqkx.2016.120

    CrossRef Google Scholar

    CHEN Fang, LU Hongfeng, LIU Jian, et al. Sedimentary geochemical response to gas hydrate episodic release on the northeastern slope of the South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2016, 41(10): 1619-1629. doi: 10.3799/dqkx.2016.120

    CrossRef Google Scholar

    [7] Musgrave R J, Bangs N L, Larrasoaña J C, et al. Rise of the base of the gas hydrate zone since the last glacial recorded by rock magnetism [J]. Geology, 2006, 34(2): 117-120. doi: 10.1130/G22008.1

    CrossRef Google Scholar

    [8] 宋海斌, 江为为, 张岭. 海洋天然气水合物的地球物理研究(Ⅳ): 双似海底反射[J]. 地球物理学进展, 2003, 18(3):497-502

    Google Scholar

    SONG Haibin, JIANG Weiwei, ZHANG Ling. Geophysical researches on marine gas hydrates(Ⅳ): Double bottom simulating reflections [J]. Progress in Geophysics, 2003, 18(3): 497-502.

    Google Scholar

    [9] Zander T, Haeckel M, Berndt C, et al. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea [J]. Earth & Planetary Science Letters, 2017, 462: 15-25.

    Google Scholar

    [10] 张光学, 陈芳, 沙志彬, 等. 南海东北部天然气水合物成藏演化地质过程[J]. 地学前缘, 2017, 24(4):15-23

    Google Scholar

    ZHANG Guangxue, CHEN Fang, SHA Zhibin, et al. The geological evolution process of natural gas hydrate reservoirs in the northeastern South China Sea [J]. Earth Science Frontiers, 2017, 24(4): 15-23.

    Google Scholar

    [11] 陈芳, 庄畅, 张光学, 等. 南海东沙海域末次冰期异常沉积事件与水合物分解[J]. 地球科学-中国地质大学学报, 2014, 39(11):1617-1616

    Google Scholar

    CHEN Fang, ZHUANG Chang, ZHANG Guangxue, et al. Abnormal sedimentary events and gas hydrate dissociation in Dongsha area of the South China Sea during Last Glacial Period [J]. Earth Science-Journal of China University of Geosciences, 2014, 39(11): 1617-1616.

    Google Scholar

    [12] 殷绍如, 王嘹亮, 郭依群, 等. 东沙海底峡谷的地貌沉积特征及成因[J]. 中国科学: 地球科学, 2015, 58(6):971-985 doi: 10.1007/s11430-014-5044-8

    CrossRef Google Scholar

    YIN Shaoru, WANG Liaoliang, GUO Yiqun, et al. Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea [J]. Science China Earth Sciences, 2015, 58(6): 971-985. doi: 10.1007/s11430-014-5044-8

    CrossRef Google Scholar

    [13] Shao L, Li X J, Geng J H, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y

    CrossRef Google Scholar

    [14] Chen C T A, Wang S L. Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea [J]. Journal of Geophysical Research, 1998, 103(C6): 12683-12688. doi: 10.1029/98JC00366

    CrossRef Google Scholar

    [15] 李前裕, 赵泉鸿, 钟广法, 等. 新近纪南海深层水的增氧与分层[J]. 地球科学-中国地质大学学报, 2008, 33(1):1-11 doi: 10.3799/dqkx.2008.001

    CrossRef Google Scholar

    LI Qianyu, ZHAO Quanhong, ZHONG Guangfa, et al. Deep water ventilation and stratification in the Neogene South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2008, 33(1): 1-11. doi: 10.3799/dqkx.2008.001

    CrossRef Google Scholar

    [16] Schlitzer R. Ocean Data View Software[EB/OL]. http://odv.awi.de/ (last access: 7 May 2015), 2009.

    Google Scholar

    [17] Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Florida: CRC Press, 2008.

    Google Scholar

    [18] Zeng L L, Wang Q, Xie Q, et al. Hydrographic field investigations in the Northern South China Sea by open cruises during 2004-2013 [J]. Science Bulletin, 2015, 60(6): 607-615. doi: 10.1007/s11434-015-0733-z

    CrossRef Google Scholar

    [19] Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975

    CrossRef Google Scholar

    [20] Bates S L, Siddall M, Waelbroeck C. Hydrographic variations in deep ocean temperature over the mid-Pleistocene transition [J]. Quaternary Science Reviews, 2014, 88: 147-158. doi: 10.1016/j.quascirev.2014.01.020

    CrossRef Google Scholar

    [21] Shyu C T, Chen Y J, Chiang S T, et al. Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan [J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(4): 845-869. doi: 10.3319/TAO.2006.17.4.845(GH)

    CrossRef Google Scholar

    [22] Yang X Q, Shi X B, Zhao J F, et al. Bottom water temperature measurements in the South China Sea, eastern Indian Ocean and western Pacific Ocean [J]. Journal of Tropical Oceanography, 2018, 37(5): 86-97.

    Google Scholar

    [23] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials [J]. Science, 2000, 288(5463): 128-133. doi: 10.1126/science.288.5463.128

    CrossRef Google Scholar

    [24] 徐行, 李亚敏, 罗贤虎, 等. 南海北部陆坡水合物勘探区典型站位不同类型热流对比[J]. 地球物理学报, 2012, 55(3):998-1006

    Google Scholar

    XU Xing, LI Yamin, LUO Xianhu, et al. Comparison of different-type heat flows at typical sites in natural gas hydrate exploration area on the northern slope of the South China Sea [J]. Chinese Journal of Geophysics, 2012, 55(3): 998-1006.

    Google Scholar

    [25] 施小斌, 王振峰, 蒋海燕, 等. 张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征[J]. 地球物理学报, 2015, 58(3):939-952

    Google Scholar

    SHI Xiaobin, WANG Zhenfeng, JIANG Haiyan, et al. Vertical variations of geothermal parameters in rifted basins and heat flow distribution features of the Qiongdongnan Basin [J]. Chinese Journal of Geophysics, 2015, 58(3): 939-952.

    Google Scholar

    [26] 施小斌, 于传海, 陈梅, 等. 南海北部陆缘热流变化特征及其影响因素分析[J]. 地学前缘, 2017, 24(3):56-64

    Google Scholar

    SHI Xiaobin, YU Chuanhai, CHEN Mei, et al. Analyses of variation features and influential factors of heat flow in the northern margin of the South China Sea [J]. Earth Science Frontiers, 2017, 24(3): 56-64.

    Google Scholar

    [27] Liao W Z, Lin A T, Liu C S, et al. Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications [J]. Journal of Asian Earth Sciences, 2014, 92: 233-244. doi: 10.1016/j.jseaes.2014.01.003

    CrossRef Google Scholar

    [28] 栾锡武, 张亮, 岳保静. 南海北部陆坡海底火山活动对天然气水合物成藏的影响[J]. 现代地质, 2010, 24(3):424-432

    Google Scholar

    LUAN Xiwu, ZHANG Liang, YUE Baojing. Influence on gas hydrates formation produced by volcanic activity on northern South China Sea slope [J]. Geoscience, 2010, 24(3): 424-432.

    Google Scholar

    [29] Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: A theoretical approach [J]. Energies, 2012, 5(7): 2449-2498. doi: 10.3390/en5072449

    CrossRef Google Scholar

    [30] Johnson J E, Phillips S C, Torres M E, et al. Influence of total organic carbon deposition on the inventory of gas hydrate in the Indian continental margins [J]. Marine & Petroleum Geology, 2014, 58: 406-424.

    Google Scholar

    [31] Matveva T V, Soloviev V A. Geological control over gas hydrate accumulation on the Blake outer ridge, western North Atlantic (from DSDP and ODP data) [J]. Russian Geology and Geophysics, 2002, 43(7): 662-671.

    Google Scholar

    [32] Riedel M, Collett T S, Kumar P, et al. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India [J]. Marine and Petroleum Geology, 2010, 27(7): 1476-1493. doi: 10.1016/j.marpetgeo.2010.06.002

    CrossRef Google Scholar

    [33] Boswell R, Frye M, Shelander D, et al. Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico [J]. Marine and Petroleum Geology, 2012, 34(1): 134-149. doi: 10.1016/j.marpetgeo.2011.08.010

    CrossRef Google Scholar

    [34] Noguchi S, Shimoda N, Takano O, et al. 3-D internal architecture of methane hydrate-bearing turbidite channels in the eastern Nankai Trough, Japan [J]. Marine and Petroleum Geology, 2011, 28(10): 1817-1828. doi: 10.1016/j.marpetgeo.2011.02.004

    CrossRef Google Scholar

    [35] 陈芳, 苏新, Nurnberg D, et al. 南海东沙海域末次冰期最盛期以来的沉积特征[J]. 海洋地质与第四纪地质, 2006, 26(6):9-17

    Google Scholar

    CHEN Fang, SU Xin, Nurnberg D, et al. Lithologic features of sediments characterized by high sedimentation rates since the last glacial maximum from dongsha area of the south china sea [J]. Marine Geology and Quaternary Geology, 2006, 26(6): 9-17.

    Google Scholar

    [36] 赵绍华, 刘志飞, 陈全, 等. 南海北部末次冰期以来深水沉积物组成及其堆积速率的时空变化特征[J]. 中国科学: 地球科学, 2017, 60(7):1368-1381 doi: 10.1007/s11430-016-9058-6

    CrossRef Google Scholar

    ZHAO Shaohua, LIU Zhifei, CHEN Quan, et al. Spatiotemporal variations of deep-sea sediment components and their fluxes since the last glaciation in the northern South China Sea [J]. Science China Earth Sciences, 2017, 60(7): 1368-1381. doi: 10.1007/s11430-016-9058-6

    CrossRef Google Scholar

    [37] Huang W, Wang P X. A quantitative approach to deep-water sedimentation in the South China Sea: Changes since the last glaciation [J]. Science in China Series D: Earth Sciences, 1998, 41(2): 195-201.

    Google Scholar

    [38] Li L, Liu H J, Zhang X, et al. BSRs, estimated heat flow, hydrate-related gas volume and their implications for methane seepage and gas hydrate in the Dongsha region, northern South China Sea [J]. Marine and Petroleum Geology, 2015, 67: 785-794. doi: 10.1016/j.marpetgeo.2015.07.008

    CrossRef Google Scholar

    [39] Mienert J, Vanneste M, Bünz S, et al. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide [J]. Marine and Petroleum Geology, 2005, 22(1-2): 233-244. doi: 10.1016/j.marpetgeo.2004.10.018

    CrossRef Google Scholar

    [40] 刘斌. 南海北部陆坡东沙海域海底丘状体气体与水合物分布[J]. 海洋学报, 2017, 39(3):68-75

    Google Scholar

    LIU Bin. Gas and gas hydrate distribution around seafloor mound in the Dongsha area, north slope of the South China Sea [J]. Haiyang Xuebao, 2017, 39(3): 68-75.

    Google Scholar

    [41] 张丙坤, 李三忠, 夏真, 等. 南海北部海底滑坡与天然气水合物形成与分解的时序性[J]. 大地构造与成矿学, 2014, 38(2):434-440

    Google Scholar

    ZHANG Bingkun, LI Sanzhong, XIA Zhen, et al. Time sequence of submarine landslides and gas hydrates in the northern South China Sea [J]. Geotectonica et Metallogenia, 2014, 38(2): 434-440.

    Google Scholar

    [42] 黄怡, 王淑红, 颜文, 等. 南海北部东沙海域天然气水合物分解事件及其与海底滑塌的关系[J]. 热带海洋学报, 2018, 37(4):61-69

    Google Scholar

    HUANG Yi, WANG Shuhong, YAN Wen, et al. Gas hydrate dissociation event and its relationship with submarine slide in Dongsha Area of northern South China Sea [J]. Journal of Tropical Oceanography, 2018, 37(4): 61-69.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(2065) PDF downloads(28) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint