Citation: | HUANG Wenkai, QIU Yan, PENG Xuechao, NIE Xin, ZHUO Haiteng, FU Chaogang. Types and migration of shelf-breaks in the central and eastern parts of the Northern South China Sea and their origin[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 1-11. doi: 10.16562/j.cnki.0256-1492.2020060801 |
This paper focuses on the types and characteristics of shelf-break migration in the Central and Eastern parts of the Northern South China Sea in the period of Quaternary. Based on the data of high-resolution seismic profiles and geological cores, six 3rd order sequences and their boundaries have been identified. Upon the basis, three types of shelf-breaks are recognized as well. They are the shelf-breaks on depositional continental margin, erosional continental margin and tectonic-controlled continental margin from west to east, formed by the joint action of tectonism, underwater channeling, sedimentary supply and other factors.
[1] | Vail P R, Mitchum R M, Todd R G, et al. Seismic stratigraphy and global changes of sea level[M]//Payton C E. Seismic Stratigraphy: Applications to Hydrocarbon Exploration. Tulsa: AAPG Publishing Bureau, 1977: 49-212. |
[2] | Van Wagoner L C, Posamentier H W, Mitchum R M, et al. An overview of the fundamentals of sequence stratigraphy and key definitions[M]//Wilgus C K. Sea-Level Changes: An Integrated Approach. Tulsa: SEPM, 1988. |
[3] | Hedberg H D. Continental margins from viewpoint of the petroleum geologist [J]. AAPG Bulletin, 1970, 54(1): 3-43. |
[4] | 林畅松, 潘元林, 肖建新, 等. “构造坡折带”: 断陷盆地层序分析和油气预测的重要概念[J]. 地球科学——中国地质大学学报, 2000, 25(3):260-266 LIN Changsong, PAN Yuanlin, XIAO Jianxin, et al. Structural slope-break zone: key concept for stratigraphic sequence analysis and petroleum forecasting in Fault Subsidence Basins [J]. Earth Science——Journal of China University of Geosciences, 2000, 25(3): 260-266. |
[5] | 姚伯初, 万玲, 刘振湖. 南海海域新生代沉积盆地构造演化的动力学特征及其油气资源[J]. 地球科学——中国地质大学学报, 2004, 29(5):543-549 YAO Bochu, WAN Ling, LIU Zhenhu. Tectonic dynamics of cenozoic sedimentary basins and hydrocarbon resources in the South China Sea [J]. Earth Science——Journal of China University of Geosciences, 2004, 29(5): 543-549. |
[6] | 谢玉洪, 王振峰, 解习农, 等. 莺歌海盆地坡折带特征及其对沉积体系的控制[J]. 地球科学——中国地质大学学报, 2004, 29(5):569-574 XIE Yuhong, WANG Zhenfeng, XIE Xinong, et al. Patterns of slope-break zone and their depositional models in the Yinggehai Basin [J]. Earth Science——Journal of China University of Geosciences, 2004, 29(5): 569-574. |
[7] | 李思田, 潘元林, 陆永潮, 等. 断陷湖盆隐蔽油藏预测及勘探的关键技术: 高精度地震探测基础上的层序地层学研究[J]. 地球科学——中国地质大学学报, 2002, 27(5):592-598 LI Sitian, PAN Yuanlin, LU Yongchao, et al. Key technology of prospecting and exploration of subtle traps in Lacustrine Fault Basins: sequence stratigraphic researches on the basis of high resolution seismic survey [J]. Earth Science——Journal of China University of Geosciences, 2002, 27(5): 592-598. |
[8] | 王英民, 金武弟, 刘书会, 等. 断陷湖盆多级坡折带的成因类型、展布及其勘探意义[J]. 石油与天然气地质, 2003, 24(3):199-203, 214 doi: 10.3321/j.issn:0253-9985.2003.03.002 WANG Yingmin, JIN Wudi, LIU Shuhui, et al. Genetic types, distribution and exploration significance of multistage slope breaks in Rift Lacustrine Basin [J]. Oil & Gas Geology, 2003, 24(3): 199-203, 214. doi: 10.3321/j.issn:0253-9985.2003.03.002 |
[9] | 庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统-中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2):145-151 doi: 10.3321/j.issn:0371-5736.2007.02.001 PANG Xiong, CHEN Changmin, SHAO Lei, et al. Baiyun movement, a great tectonic event on the Oligocene-Miocene boundary in the Northern South China sea and its implications [J]. Geological Review, 2007, 53(2): 145-151. doi: 10.3321/j.issn:0371-5736.2007.02.001 |
[10] | 黄胜兵, 叶加仁, 朱红涛, 等. 渤中西环古沟谷与坡折带特征及其对储层的控制[J]. 海洋地质与第四纪地质, 2011, 31(1):119-124 HUANG Shengbing, YE Jiaren, ZHU Hongtao, et al. Characteristics of valley-slope break zone in the Western Circle of the Bozhong depression and its control over reservoir distribution [J]. Marine Geology & Quaternary Geology, 2011, 31(1): 119-124. |
[11] | 王永凤, 王英民, 李冬, 等. 珠江口盆地坡折带特征及其对沉积体系的控制[J]. 沉积与特提斯地质, 2011, 31(3):1-6 doi: 10.3969/j.issn.1009-3850.2011.03.001 WANG Yongfeng, WANG Yingmin, LI Dong, et al. Characteristics of the slope break zones and their controls on the depositional systems in the Pearl River Mouth Basin [J]. Sedimentary Geology and Tethyan Geology, 2011, 31(3): 1-6. doi: 10.3969/j.issn.1009-3850.2011.03.001 |
[12] | 田姗姗, 苏明, 何云龙, 等. 琼东南盆地新近系坡折带特征及其对沉积体系的控制[J]. 科技导报, 2010, 28(10):73-78 TIAN Shanshan, SU Ming, HE Yunlong, et al. Patterns of Neogene slope-break zones and the depositional system under their control in Qiongdongnan Basin [J]. Science & Technology Review, 2010, 28(10): 73-78. |
[13] | 肖军, 王华, 陆永潮, 等. 琼东南盆地构造坡折带特征及其对沉积的控制作用[J]. 海洋地质与第四纪地质, 2003, 23(3):55-63 XIAO Jun, WANG Hua, LU Yongchao, et al. Characteristics of structural slope-break zone and its controlling effect on sediment in the Qiongdongnan Basin [J]. Marine Geology & Quaternary Geology, 2003, 23(3): 55-63. |
[14] | 赵忠新, 王华, 陆永潮. 断坡带对沉积体系的控制作用: 以琼东南盆地为例[J]. 石油勘探与开发, 2003, 30(1):25-27 doi: 10.3321/j.issn:1000-0747.2003.01.006 ZHAO Zhongxin, WANG Hua, LU Yongchao. Controlling role of fault-break zones on sedimentary system: taking Qiongdongnan basin as an example [J]. Petroleum Exploration and Development, 2003, 30(1): 25-27. doi: 10.3321/j.issn:1000-0747.2003.01.006 |
[15] | 陈泓君, 詹文欢, 温明明, 等. 南海西北部琼东南盆地陆架坡折带类型及沉积作用特征[J]. 海洋地质前沿, 2015, 31(8):1-9 CHEN Hongjun, ZHAN Wenhuan, WEN Mingming, et al. Characteristics of shelf break and sedimentation process at the Qiongdongnan Basin, Northwestern South China Sea [J]. Marine Geology Frontiers, 2015, 31(8): 1-9. |
[16] | Tesson M, Posamentier H W, Gensous B. Stratigraphic organization of late Pleistocene deposits of the western part of the Golfe du Lion shelf (Languedoc shelf), Western Mediterranean Sea, using high-resolution seismic and core data [J]. AAPG Bulletin, 2000, 84(1): 119-150. |
[17] | Lobo F J, Ridente D. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins: an overview [J]. Marine Geology, 2014, 352: 215-247. doi: 10.1016/j.margeo.2013.10.009 |
[18] | Labaune C, Tesson M, Gensous B. Variability of the transgressive stacking pattern under environmental changes control: Example from the Post-Glacial deposits of the Gulf of Lions inner-shelf, Mediterranean, France [J]. Continental Shelf Research, 2008, 28(9): 1138-1152. doi: 10.1016/j.csr.2008.02.016 |
[19] | 吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 2009, 27(5):922-930 WU Shiguo, QIN Yunshan. The research of deepwater depositional system in the Northern South China Sea [J]. Acta Sedimentologica Sinica, 2009, 27(5): 922-930. |
[20] | 栾锡武, 彭学超, 王英民, 等. 南海北部陆架海底沙波基本特征及属性[J]. 地质学报, 2010, 84(2):233-245 LUAN Xiwu, PENG Xuechao, WANG Yingmin, et al. Characteristics of sand waves on the Northern South China sea shelf and its formation [J]. Acta Geologica Sinica, 2010, 84(2): 233-245. |
[21] | Ross W C, Halliwell B A, May J A, et al. Slope readjustment: a new model for the development of submarine fans and aprons [J]. Geology, 1994, 22(6): 511-514. doi: 10.1130/0091-7613(1994)022<0511:SRANMF>2.3.CO;2 |
[22] | 聂鑫, 彭学超, 杜文波. 南海北部陆架第四系边缘三角洲地震反射特征[J]. 海洋地质前沿, 2017, 33(1):19-26 NIE Xin, PENG Xuechao, DU Wenbo. Seismic facies of quaternary shelf-margin deltas in Northern South China Sea [J]. Marine Geology Frontiers, 2017, 33(1): 19-26. |
[23] | Sun X J, Luo Y L, Huang F, et al. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon [J]. Marine Geology, 2003, 201(1-3): 97-118. doi: 10.1016/S0025-3227(03)00211-1 |
The location map of the study area
A selected seismic profile across cores STQ1 and STQ2 showing character of sequence boundaries
Dating results from the geological core STQ1 and STQ2
Shelf break types in the middle and east part of the northern South China Sea
Seismic profiles at different locations showing shelf break types
A selected seismic profile showing a compound incised valley on inner shelf
Distribution of Quaternary incised valleys in the east part of the northern South China Sea
Comparison of the migration of shelf-break caused by sea level change
Comparison of the difference in sedimentation rate caused by climate change