2020 Vol. 40, No. 6
Article Contents

XU Cuiling, SUN Zhilei, WU Nengyou, ZHAO Guangtao, GENG Wei, CAO Hong, ZHANG Xianrong, ZHANG Xilin, ZHAI Bin, LI Xin. Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2020050801
Citation: XU Cuiling, SUN Zhilei, WU Nengyou, ZHAO Guangtao, GENG Wei, CAO Hong, ZHANG Xianrong, ZHANG Xilin, ZHAI Bin, LI Xin. Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2020050801

Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input

More Information
  • Submarine mud volcanoes contribute carbon to the hydrosphere and the atmosphere by releasing methane-rich fluids, and researches on the temporal and spatial distribution of methane migration and chemical transportation at submarine mud volcanoes are the keys to understanding the processes mentioned above. In this paper, a large number of domestic and foreign literatures are systematically investigated, and the strong heterogeneity of methane leakage was recognized in the mud volcano systems. Methane emissions mainly occur during the eruption and dormant periods of mud volcanoes, and only a small amount of leakage occurs in extinct periods. In space, strong methane bubble leakages are usually developed around the centers of mud volcanos, and the chemical transportation efficiencies of methane are low in sediments; the leakages of methane and DIC controlled by fluid flow are mainly developed in the wings, where the rates of anaerobic oxidation of methane and the precipitation rate of authigenic carbonate are the highest. Shallow sediments have the strongest interception to carbon emission; both the intensity and the transportation rate of methane in the edge area are low, and hence a large area of DIC microleakage is developed. Globally, the carbon flux from submarine mud volcanos into shallow sediments is ca. 0.02 Pg C·a−1. The methane and DIC coming from sediments could cause seawater anoxia, acidification, and change air-sea carbon exchange fluxes, which may affect the ocean’s ability to absorb atmospheric carbon dioxide on millennium scale or even in a shorter time, and thus impacts on the global climate environment. In the future, accurate statistics on the number and eruption cycle of submarine mud volcanoes, and detailed investigations on the migration and transportation of methane in typical submarine mud volcanoes with different sizes and development stages, will be helpful to further accurately estimate their total carbon emissions, to study the impacts of bottom-up mud volcanoes’ carbon emissions on the marine carbon cycle, and to improve the marine carbon cycle model.

  • 加载中
  • [1] Kopf A J. Significance of mud volcanism [J]. Reviews of Geophysics, 2002, 40(2): 2-1-2-52.

    Google Scholar

    [2] Dimitrov L I. Mud volcanoes—the most important pathway for degassing deeply buried sediments [J]. Earth Science Reviews, 2002, 59(1-4): 49-76. doi: 10.1016/S0012-8252(02)00069-7

    CrossRef Google Scholar

    [3] Zheng G D, Ma X X, Guo Z F, et al. Gas geochemistry and methane emission from Dushanzi mud volcanoes in the southern Junggar Basin, NW China [J]. Journal of Asian Earth Sciences, 2017, 149: 184-190. doi: 10.1016/j.jseaes.2017.08.023

    CrossRef Google Scholar

    [4] Etiope G, Milkov A V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere [J]. Environmental Geology, 2004, 46(8): 997-1002. doi: 10.1007/s00254-004-1085-1

    CrossRef Google Scholar

    [5] 马向贤, 郑国东, 郭正府, 等. 准噶尔盆地南缘独山子泥火山温室气体排放通量[J]. 科学通报, 2014, 59(32):3190-3196 doi: 10.1360/N972014-00361

    CrossRef Google Scholar

    MA Xiangxian, ZHENG Guodong, GUO Zhengfu, et al. Estimation of greenhouse gas flux from mud volcanoes in the Dushanzi area, southern Junggar Basin of Northwest China [J]. Chinese Science Bulletin, 2014, 59(32): 3190-3196. doi: 10.1360/N972014-00361

    CrossRef Google Scholar

    [6] 陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3):483-489 doi: 10.3321/j.issn:0001-5733.2004.03.018

    CrossRef Google Scholar

    CHEN Duofu, LI Xuxuan, XIA Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan basin of the South China Sea [J]. Chinese Journal of Geophysics, 2004, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018

    CrossRef Google Scholar

    [7] 何家雄, 祝有海, 翁荣南, 等. 南海北部边缘盆地泥底辟及泥火山特征及其与油气运聚关系[J]. 地球科学, 2010, 35(1):75-86

    Google Scholar

    HE Jiaxiong, ZHU Youhai, WENG Rongnan, et al. Characters of North-West Mud Diapirs volcanoes in South China Sea and relationship between them and accumulation and migration of oil and gas [J]. Earth Science, 2010, 35(1): 75-86.

    Google Scholar

    [8] 阎贫, 王彦林, 郑红波, 等. 东沙群岛西南海区泥火山的地球物理特征[J]. 海洋学报, 2014, 36(7):142-148

    Google Scholar

    YAN Pin, WANG Yanlin, ZHENG Hongbo, et al. Geophysical features of mud volcanoes in the waters southwest of the Dongsha islands [J]. Acta Oceanologica Sinica, 2014, 36(7): 142-148.

    Google Scholar

    [9] Xu C L, Sun Z L, Geng W, et al. Thermal recovery method of submarine gas hydrate based on a thermoelectric generator [J]. China Geology, 2018, 1(4): 568-569. doi: 10.31035/cg2018068

    CrossRef Google Scholar

    [10] Sun Z L, Cao H, Geng W, et al. A three-dimensional environmental monitoring system for the production of marine gas hydrates [J]. China Geology, 2018, 1(4): 570-571. doi: 10.31035/cg2018066

    CrossRef Google Scholar

    [11] Wallmann K, Drews M, Aloisi G, et al. Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes [J]. Earth & Planetary Science Letters, 2006, 248(1-2): 545-560.

    Google Scholar

    [12] Niemann H, Duarte J, Hensen C, et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz [J]. Geochimica Et Cosmochimica Acta, 2006, 70(21): 5336-5355. doi: 10.1016/j.gca.2006.08.010

    CrossRef Google Scholar

    [13] Wan Z F, Yao Y J, Chen K W, et al. Characterization of mud volcanoes in the northern Zhongjiannan Basin, western South China Sea [J]. Geological Journal, 2019, 54(1): 177-189. doi: 10.1002/gj.3168

    CrossRef Google Scholar

    [14] Dupré S, Buffet G, Mascle J, et al. High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys [J]. Marine Geophysical Research, 2008, 29(4): 275-290. doi: 10.1007/s11001-009-9063-3

    CrossRef Google Scholar

    [15] de Beer D, Sauter E, Niemann H, et al. In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano [J]. Limnology & Oceanography, 2006, 51(3): 1315-1331.

    Google Scholar

    [16] Hensen C, Nuzzo M, Hornibrook E, et al. Sources of mud volcano fluids in the Gulf of Cadiz—indications for hydrothermal imprint [J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1232-1248. doi: 10.1016/j.gca.2006.11.022

    CrossRef Google Scholar

    [17] Mazzini A, Etiope G. Mud volcanism: An updated review [J]. Earth-Science Reviews, 2017, 168: 81-112. doi: 10.1016/j.earscirev.2017.03.001

    CrossRef Google Scholar

    [18] ZHANG J, LEI H Y, CHEN Y, et al. Carbon and oxygen isotope composition of carbonate in bulk sediment in the southwest Taiwan Basin, South China Sea: methane hydrate decomposition history and its link to mud volcano eruption [J]. Marine & Petroleum Geology, 2018, 98: 687-696.

    Google Scholar

    [19] Yan P, Wang Y L, Liu J, et al. Discovery of the southwest Dongsha Island mud volcanoes amid the northern margin of the South China Sea [J]. Marine & Petroleum Geology, 2017, 88: 858-870.

    Google Scholar

    [20] Chen J X, Song H B, Guan Y X, et al. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 106-117. doi: 10.1016/j.dsr2.2015.11.007

    CrossRef Google Scholar

    [21] Ciais P, Sabine C, Bala G, et al. Carbon and other biogeochemical cycles[M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 465-570.

    Google Scholar

    [22] Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    CrossRef Google Scholar

    [23] 冯东, 陈多福, 苏正, 等. 海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J]. 现代地质, 2005, 19(1):26-32 doi: 10.3969/j.issn.1000-8527.2005.01.004

    CrossRef Google Scholar

    FEND Dong, CHEN Duofu, SU Zheng, et al. Characteristics of cold seep carbonates and microbial processes in gas seep system [J]. Geoscience, 2005, 19(1): 26-32. doi: 10.3969/j.issn.1000-8527.2005.01.004

    CrossRef Google Scholar

    [24] Xu C L, Wu N Y, Sun Z L, et al. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough [J]. Marine and Petroleum Geology, 2018, 98: 306-315. doi: 10.1016/j.marpetgeo.2018.08.021

    CrossRef Google Scholar

    [25] Caprais J C, Lanteri N, Crassous P, et al. A new CALMAR benthic chamber operating by submersible: First application in the cold-seep environment of Napoli mud volcano (Mediterranean Sea) [J]. Limnology & Oceanography Methods, 2010, 8(6): 304-312.

    Google Scholar

    [26] Sun M S, Zhang G L, Ma X, et al. Dissolved methane in the East China Sea: Distribution, seasonal variation and emission [J]. Marine Chemistry, 2018, 202: 12-26. doi: 10.1016/j.marchem.2018.03.001

    CrossRef Google Scholar

    [27] 孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学报, 2016, 35(3):442-450

    Google Scholar

    SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450.

    Google Scholar

    [28] Judd A, Hovland M. Seabed Fluid Flow—the Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2007:195-205.

    Google Scholar

    [29] Milkov A V, Vogt P R, Crane K, et al. Geological, geochemical, and microbial processes at the hydrate-bearing Hakon Mosby mud volcano: a review [J]. Chemical Geology, 2004, 205(3-4): 347-366. doi: 10.1016/j.chemgeo.2003.12.030

    CrossRef Google Scholar

    [30] Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth & Planetary Science Letters, 2006, 243(3-4): 354-365.

    Google Scholar

    [31] Felden J, Wenzhöfer F, Feseker T, et al. Transport and consumption of oxygen and methane in different habitats of the Håkon Mosby Mud Volcano (HMMV) [J]. Limnology & Oceanography, 2010, 55(6): 2366-2380.

    Google Scholar

    [32] Bohrmann G, Torres M E. Gas hydrates in marine sediments[M]//Schulz H, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer-Verlag, 2006: 481-512.

    Google Scholar

    [33] Lichtschlag A, Felden J, Wenzhöfer F, et al. Methane and sulfide fluxes in permanent anoxia: in situ studies at the Dvurechenskii mud volcano (Sorokin Trough, Black Sea) [J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5002-5018. doi: 10.1016/j.gca.2010.05.031

    CrossRef Google Scholar

    [34] Linke P, Wallmann K, Suess E, et al. In situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin [J]. Earth & Planetary Science Letters, 2005, 235(1-2): 79-95.

    Google Scholar

    [35] Vanneste H, Kelly-Gerreyn B A, Connelly D P, et al. Spatial variation in fluid flow and geochemical fluxes across the sediment–seawater interface at the Carlos Ribeiro mud volcano (Gulf of Cadiz) [J]. Geochimica Et Cosmochimica Acta, 2011, 75(4): 1124-1144. doi: 10.1016/j.gca.2010.11.017

    CrossRef Google Scholar

    [36] Sommer S, Linke P, Pfannkuche O, et al. Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz) [J]. Marine Ecology Progress Series, 2009, 382: 69-86. doi: 10.3354/meps07956

    CrossRef Google Scholar

    [37] Praeg D, Ceramicola S, Barbieri R, et al. Tectonically-driven mud volcanism since the late Pliocene on the Calabrian accretionary prism, central Mediterranean Sea [J]. Marine & Petroleum Geology, 2009, 26(9): 1849-1865.

    Google Scholar

    [38] Toyos M H, Medialdea T, León R, et al. Evidence of episodic long-lived eruptions in the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes, Gulf of Cádiz [J]. Geo Marine Letters, 2016, 36(3): 197-214. doi: 10.1007/s00367-016-0440-z

    CrossRef Google Scholar

    [39] 黄华谷, 邸鹏飞, 陈多福. 泥火山的全球分布和研究进展[J]. 矿物岩石地球化学通报, 2011, 30(2):189-197 doi: 10.3969/j.issn.1007-2802.2011.02.010

    CrossRef Google Scholar

    HUANG Huagu, DI Pengfei, CHEN Duofu. Global distribution and research progress of mud volcanoes [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(2): 189-197. doi: 10.3969/j.issn.1007-2802.2011.02.010

    CrossRef Google Scholar

    [40] Deville E, Guerlais S H. Cyclic activity of mud volcanoes: Evidences from Trinidad (SE Caribbean) [J]. Marine & Petroleum Geology, 2009, 26(9): 1681-1691.

    Google Scholar

    [41] 王家生, Suess E. 天然气水合物伴生的沉积物碳、氧稳定同位素示踪[J]. 科学通报, 2002, 47(15):1172-1176 doi: 10.3321/j.issn:0023-074X.2002.15.012

    CrossRef Google Scholar

    WANG Jiasheng, Suess E. Carbon and oxygen stable isotope tracing of sediments associated with gas hydrate [J]. Chinese Science Bulletin, 2002, 47(15): 1172-1176. doi: 10.3321/j.issn:0023-074X.2002.15.012

    CrossRef Google Scholar

    [42] Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005

    CrossRef Google Scholar

    [43] Luo M, Torres M E, Hong W L, et al. Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin [J]. Earth and Planetary Science Letters, 2020, 541: 116288. doi: 10.1016/j.jpgl.2020.116288

    CrossRef Google Scholar

    [44] Egger M, Hagens M, Sapart C J, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediment [J]. Geochimica et Cosmochimica Acta, 2017, 207: 256-276. doi: 10.1016/j.gca.2017.03.019

    CrossRef Google Scholar

    [45] Karaca D, Hensen C, Wallmann K. Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08S27.

    Google Scholar

    [46] Lein A Y, Pimenov N V, Savviechev A S, et al. Methane as a source of organic matter and carbon dioxide of carbonates at a cold seep in the Norway Sea [J]. Geochemistry International, 2000, 38(3): 232-245.

    Google Scholar

    [47] Niemann H, Linke P, Knittel K, et al. Methane-carbon flow into the benthic food web at cold seeps – A case study from the costa Rica Subduction zone [J]. PLoS One, 2013, 8(10): e74894. doi: 10.1371/journal.pone.0074894

    CrossRef Google Scholar

    [48] Haese R R, Meile C, van Cappellen P, et al. Carbon geochemistry of cold seeps: Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea [J]. Earth and Planetary Science Letters, 2003, 212(3-4): 361-375. doi: 10.1016/S0012-821X(03)00226-7

    CrossRef Google Scholar

    [49] Wang X C, Chen R F, Whelan J, et al. Contribution of "Old" carbon from natural marine hydrocarbon seeps to sedimentary and dissolved organic carbon pools in the Gulf of Mexico [J]. Geophysical Research Letters, 2001, 28(17): 3313-3316. doi: 10.1029/2001GL013430

    CrossRef Google Scholar

    [50] Pohlman J W, Bauer J E, Waite W F, et al. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans [J]. Nature Geoscience, 2011, 4(1): 37-41. doi: 10.1038/ngeo1016

    CrossRef Google Scholar

    [51] Hung C W, Huang K H, Shih Y Y, et al. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea [J]. Scientific Reports, 2016, 6: 29597. doi: 10.1038/srep29597

    CrossRef Google Scholar

    [52] Stadnitskaia A, Muyzer G, Abbas B, et al. Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea [J]. Marine Geology, 2005, 217(1-2): 67-96. doi: 10.1016/j.margeo.2005.02.023

    CrossRef Google Scholar

    [53] Magalhães V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz [J]. Sedimentary Geology, 2012, 243-244: 155-168. doi: 10.1016/j.sedgeo.2011.10.013

    CrossRef Google Scholar

    [54] Tamborrino L, Himmler T, Elvert M, et al. Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea [J]. Marine and Petroleum Geology, 2019, 107: 20-31. doi: 10.1016/j.marpetgeo.2019.05.003

    CrossRef Google Scholar

    [55] Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008

    CrossRef Google Scholar

    [56] Ruffine L, Germain Y, Polonia A, et al. Pore water geochemistry at two seismogenic areas in the Sea of Marmara [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7): 2038-2057. doi: 10.1002/2015GC005798

    CrossRef Google Scholar

    [57] Mazumdar A, Peketi A, Joao H M, et al. Pore-water chemistry of sediment cores off Mahanadi Basin, Bay of Bengal: Possible link to deep seated methane hydrate deposit [J]. Marine & Petroleum Geology, 2014, 49: 162-175.

    Google Scholar

    [58] Haese R R, Hensen C, de Lange G J. Pore water geochemistry of eastern Mediterranean mud volcanoes: Implications for fluid transport and fluid origin [J]. Marine Geology, 2006, 225(1-4): 191-208. doi: 10.1016/j.margeo.2005.09.001

    CrossRef Google Scholar

    [59] Aloisi G, Drews M, Wallmann K, et al. Fluid expulsion from the Dvurechenskii mud volcano (Black Sea): Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles [J]. Earth & Planetary Science Letters, 2004, 225(3-4): 347-363.

    Google Scholar

    [60] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7):668-681 doi: 10.11867/j.issn.1001-8166.2016.07.0668.

    CrossRef Google Scholar

    JIAO Nianzhi, LI Chao, WANG Xiaoxue. Response and feedback of marine carbon sink to climate change [J]. Advances in Earth Science, 2016, 31(7): 668-681. doi: 10.11867/j.issn.1001-8166.2016.07.0668.

    CrossRef Google Scholar

    [61] Dimitrov L, Woodside J. Deep sea pockmark environments in the eastern Mediterranean [J]. Marine Geology, 2003, 195(1-4): 263-276. doi: 10.1016/S0025-3227(02)00692-8

    CrossRef Google Scholar

    [62] Palomino D, López-González N, Vázquez J T, et al. Multidisciplinary study of mud volcanoes and diapirs and their relationship to seepages and bottom currents in the Gulf of Cádiz continental slope (northeastern sector) [J]. Marine Geology, 2016, 378: 196-212. doi: 10.1016/j.margeo.2015.10.001

    CrossRef Google Scholar

    [63] Chuang P C, Yang T F, Hong W L, et al. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation [J]. Geofluids, 2010, 10(4): 497-510. doi: 10.1111/j.1468-8123.2010.00313.x

    CrossRef Google Scholar

    [64] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926

    CrossRef Google Scholar

    [65] Werne J P, Haese R R, Zitter T, et al. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea [J]. Chemical Geology, 2004, 205(3-4): 367-390. doi: 10.1016/j.chemgeo.2003.12.031

    CrossRef Google Scholar

    [66] Ritt, B., Pierre, C., Gauthier, O. et al Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan [J]. Marine Biology, 2011, 158: 1187-1210. doi: 10.1007/s00227-011-1679-6

    CrossRef Google Scholar

    [67] Tanhua T, Bates N R, Körtzinger A. The marine carbon cycle and ocean carbon inventories [J]. International Geophysics, 2013, 103: 787-815. doi: 10.1016/B978-0-12-391851-2.00030-1

    CrossRef Google Scholar

    [68] 张含. 大气二氧化碳、全球变暖、海洋酸化与海洋碳循环相互作用的模拟研究[D]. 杭州: 浙江大学, 2018.

    Google Scholar

    ZHANG Han. A modeling study of interactive feedbacks between carbon dioxide, global warming, ocean acidification, and the ocean carbon cycle[D]. Hangzhou: Zhejiang University, 2018:19-50.

    Google Scholar

    [69] Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment [J]. Energy & Fuels, 2005, 19(2): 459-470.

    Google Scholar

    [70] Milkov A V, Sassen R, Apanasovich T V, et al. Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean [J]. Geophysical Research Letters, 2003, 30(2): 1037.

    Google Scholar

    [71] Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0

    CrossRef Google Scholar

    [72] Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability [J]. Earth & Planetary Science Letters, 2006, 244(1-2): 1-15.

    Google Scholar

    [73] Zhang X R, Sun Z L, Fan D J, et al. Compositional characteristics and sources of DIC and DOC in seawater of the Okinawa Trough, East China Sea [J]. Continental Shelf Research, 2019, 174: 108-117. doi: 10.1016/j.csr.2018.12.014

    CrossRef Google Scholar

    [74] Wallmann K, Aloisi G, Haeckel M, et al. Silicate weathering in anoxic marine sediments [J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2895-2918. doi: 10.1016/j.gca.2008.03.026

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(3716) PDF downloads(305) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint