2021 Vol. 41, No. 2
Article Contents

SUN Luyi, ZHANG Guangxu, WANG Xiujuan, JIN Jiapeng, HE Min, ZHU Zhenyu. Numerical modeling of gas hydrate saturation for the Shenhu area, South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 210-221. doi: 10.16562/j.cnki.0256-1492.2020050501
Citation: SUN Luyi, ZHANG Guangxu, WANG Xiujuan, JIN Jiapeng, HE Min, ZHU Zhenyu. Numerical modeling of gas hydrate saturation for the Shenhu area, South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 210-221. doi: 10.16562/j.cnki.0256-1492.2020050501

Numerical modeling of gas hydrate saturation for the Shenhu area, South China Sea

More Information
  • The Shenhu area is located in the Pearl River Mouth Basin. It is a critical testing area for gas hydrate drilling and pilot production. Comprehensive studies of core samples and logging and seismic data suggest that gas hydrate saturation, thickness of gas hydrate layer and gas source conditions are different from sites to sites. Based on the geological model established by integrating the well log and seismic data from both gas hydrate and deep-water oil and gas drilling sites, we simulated the temperature field, organic matter maturity, hydrocarbon generation of source rocks, fluid migration pathways and gas hydrate saturation related to different source rocks with the PetroMod software. The results suggest that biogenic gas is mainly distributed in the immature organic strata 1 500 m below the seafloor, while thermogenic gas is distributed in the matured and over matured deposits over a depth of 2 300 m. Gas hydrate cannot be formed by in-situ biogenic gas within the gas hydrate stability zone. Therefore, the gases, which may form gas hydrate are mainly the biogenic and thermogenic gases moving up from the deep strata. The comparison between the modeling results and the log-derived saturation data suggest that the simulated saturation is around 10% for biogenic gas to become gas hydrate in the lower part of stability zone, while the value is higher at some areas such as canyon ridges. Higher saturation (>40%) for hydrate formation is closely related to deep source thermogenic gas from the Wenchang and Enping Formations released in an episodic manner along the fluid migration channels such as sand layers, faults and gas chimneys. In addition, the methane contents from biogenic and thermogenic gases are calculated based on the modeling gas hydrate saturation. It shows that the thermogenic gas content is about 80% at Site W19 and 73% at Site W17, and nearly no thermogenic gas is found at Site SH2.

  • 加载中
  • [1] 朱俊章, 施和生, 庞雄, 等. 白云凹陷天然气生成与大中型气田形成关系[J]. 天然气地球科学, 2012, 23(2):213-221

    Google Scholar

    ZHU Junzhang, SHI Hesheng, PANG Xiong, et al. Discussion on natural gas generation and giant-medium size gas field formation in Baiyun sag [J]. Natural Gas Geosciences, 2012, 23(2): 213-221.

    Google Scholar

    [2] 何家雄, 卢振权, 张伟, 等. 南海北部珠江口盆地深水区天然气水合物成因类型及成矿成藏模式[J]. 现代地质, 2015, 29(5):1024-1034 doi: 10.3969/j.issn.1000-8527.2015.05.005

    CrossRef Google Scholar

    HE Jiaxiong, LU Zhenquan, ZHANG Wei, et al. Biogenetic and sub-biogenetic gas resource and genetic types of natural gas hydrates in Pearl River Mouth Basin, northern area of South China Sea [J]. Geoscience, 2015, 29(5): 1024-1034. doi: 10.3969/j.issn.1000-8527.2015.05.005

    CrossRef Google Scholar

    [3] 杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4):1-14

    Google Scholar

    YANG Shengxiong, LIANG Jinqiang, LU Jing’an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea [J]. Earth Science Frontiers, 2017, 24(4): 1-14.

    Google Scholar

    [4] Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea [J]. China Geology, 2018, 1: 5-16.

    Google Scholar

    [5] Wang X J, Collett T S, Lee M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea [J]. Marine Geology, 2014, 357: 272-292. doi: 10.1016/j.margeo.2014.09.040

    CrossRef Google Scholar

    [6] Wu N Y, Zhang H Q, Yang S X, et al. Gas hydrate system of Shenhu area, Northern South China Sea: Geochemical results [J]. Journal of Geological Research, 2011, 2011: 370298.

    Google Scholar

    [7] Yu X H, Wang J Z, Liang J Q, et al. Depositional characteristics and accumulation model of gas hydrates in northern South China Sea [J]. Marine and Petroleum Geology, 2014, 56: 74-86. doi: 10.1016/j.marpetgeo.2014.03.011

    CrossRef Google Scholar

    [8] Zhang W, Liang J Q, Wei J G, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, Northern South China Sea [J]. Marine and Petroleum Geology, 2020, 114: 104191. doi: 10.1016/j.marpetgeo.2019.104191

    CrossRef Google Scholar

    [9] Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate [J]. Organic Geochemistry, 1995, 23(11-12): 997-1008. doi: 10.1016/0146-6380(96)00002-2

    CrossRef Google Scholar

    [10] Qian J, Wang X J, Collett T S, et al. Downhole log evidence for the coexistence of structure II gas hydrate and free gas below the bottom simulating reflector in the South China Sea [J]. Marine and Petroleum Geology, 2018, 98: 662-674. doi: 10.1016/j.marpetgeo.2018.09.024

    CrossRef Google Scholar

    [11] Yang S X, Liang J Q, Lei Y, et al. GMGS4 gas hydrate drilling expedition in the South China Sea [J]. Fire in the Ice, 2017, 17(1): 7-11.

    Google Scholar

    [12] 于兴河, 梁金强, 方竞男. 珠江口盆地深水区晚中新世以来构造沉降与似海底反射(BSR)分布的关系[J]. 古地理学报, 2012, 14(6):787-800 doi: 10.7605/gdlxb.2012.06.010

    CrossRef Google Scholar

    YU Xinghe, LIANG Jinqiang, FANG Jingnan, et al. Tectonic subsidence characteristics and its relationship to BSR distribution in deep water area of Pearl River Mouth Basin since the Late Miocene [J]. Journal of Palaeogeography, 2012, 14(6): 787-800. doi: 10.7605/gdlxb.2012.06.010

    CrossRef Google Scholar

    [13] Jin J P, Wang X J, Guo Y Q, et al. Geological controls on the occurrence of recently formed highly concentrated gas hydrate accumulations in the Shenhu area, South China Sea [J]. Marine and Petroleum Geology, 2020, 116: 104294. doi: 10.1016/j.marpetgeo.2020.104294

    CrossRef Google Scholar

    [14] Wei J G, Fang Y X, Lu H L, et al. Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea [J]. Marine and Petroleum Geology, 2018, 98: 622-628. doi: 10.1016/j.marpetgeo.2018.07.028

    CrossRef Google Scholar

    [15] 吴能友, 杨胜雄, 王宏斌, 等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6):1641-1650 doi: 10.3969/j.issn.0001-5733.2009.06.027

    CrossRef Google Scholar

    WU Nengyou, YANG Shengxiong, WANG Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu area, Northern South China Sea [J]. Chinese Journal of Geophysics, 2009, 52(6): 1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027

    CrossRef Google Scholar

    [16] Piñero E, Hensen C, Haeckel M, et al. 3-D numerical modelling of methane hydrate accumulations using PetroMod [J]. Marine and Petroleum Geology, 2016, 71: 288-295. doi: 10.1016/j.marpetgeo.2015.12.019

    CrossRef Google Scholar

    [17] Burwicz E, Reichel T, Wallmann K, et al. 3-D basin-scale reconstruction of natural gas hydrate system of the Green Canyon, Gulf of Mexico [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(5): 1959-1985. doi: 10.1002/2017GC006876

    CrossRef Google Scholar

    [18] Kroeger K F, Plaza-Faverola A, Barnes P M, et al. Thermal evolution of the New Zealand Hikurangi subduction margin: Impact on natural gas generation and methane hydrate formation - A model study [J]. Marine and Petroleum Geology, 2015, 63: 97-114. doi: 10.1016/j.marpetgeo.2015.01.020

    CrossRef Google Scholar

    [19] 何丽娟, 雷兴林, 张毅. 南海北部神狐海域天然气水合物形成聚集的数值模拟研究[J]. 地球物理学报, 2011, 54(5):1285-1292 doi: 10.3969/j.issn.0001-5733.2011.05.017

    CrossRef Google Scholar

    HE Lijuan, LEI Xinglin, ZHANG Yi. Numerical modeling of gas hydrate accumulation in the marine sediments of Shenhu area, northern South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(5): 1285-1292. doi: 10.3969/j.issn.0001-5733.2011.05.017

    CrossRef Google Scholar

    [20] Su P B, Liang J Q, Peng J, et al. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu area, northern South China sea [J]. Journal of Asian Earth Sciences, 2018, 168: 57-76. doi: 10.1016/j.jseaes.2018.08.001

    CrossRef Google Scholar

    [21] Zhu H X, Xu T F, Zhu Z Y, et al. Numerical modeling of methane hydrate accumulation with mixed sources in marine sediments: Case study of Shenhu Area, South China Sea [J]. Marine Geology, 2020, 423: 106142. doi: 10.1016/j.margeo.2020.106142

    CrossRef Google Scholar

    [22] 庞雄, 施和生, 朱明, 等. 再论白云深水区油气勘探前景[J]. 中国海上油气, 2014, 26(3):23-29

    Google Scholar

    PANG Xiong, SHI Hesheng, ZHU Ming, et al. A further discussion on the hydrocarbon exploration potential in Baiyun deep water area [J]. China Offshore Oil and Gas, 2014, 26(3): 23-29.

    Google Scholar

    [23] Ping H W, Chen H H, Zhu J Z, et al. Origin, source, mixing, and thermal maturity of natural gases in the Panyu lower uplift and the Baiyun depression, Pearl River Mouth Basin, northern South China Sea [J]. AAPG Bulletin, 2018, 102(11): 2171-2200. doi: 10.1306/04121817160

    CrossRef Google Scholar

    [24] 谢志远, 杨建民, 孙龙涛, 等. 南海北缘白云凹陷北坡裂后断裂活动特征及构造沉积响应[J]. 热带海洋学报, 2017, 36(5):59-71

    Google Scholar

    XIE Zhiyuan, YANG Jianmin, SUN Longtao, et al. The characteristics of post-rift fault activities and sedimentary response on the northern slope of the Baiyun sag in the northern margin of the South China Sea [J]. Journal of Tropical Oceanography, 2017, 36(5): 59-71.

    Google Scholar

    [25] 米立军, 何敏, 翟普强, 等. 珠江口盆地深水区白云凹陷高热流背景油气类型与成藏时期综合分析[J]. 中国海上油气, 2019, 31(1):1-12

    Google Scholar

    MI Lijun, HE Min, ZHAI Puqiang, et al. Integrated study on hydrocarbon types and accumulation periods of Baiyun sag, deep water area of Pearl River Mouth basin under the high heat flow background [J]. China Offshore Oil and Gas, 2019, 31(1): 1-12.

    Google Scholar

    [26] 何家雄, 夏斌, 张启明, 等. 南海北部边缘盆地生物气和亚生物气资源潜力与勘探前景分析[J]. 天然气地球科学, 2005, 16(2):167-174 doi: 10.3969/j.issn.1672-1926.2005.02.007

    CrossRef Google Scholar

    HE Jiaxiong, XIA Bin, ZHANG Qiming, et al. Resources base and exploration potential of biogenic and sub-biogenic gas in marginal basin of the northern South China Sea [J]. Natural Gas Geoscience, 2005, 16(2): 167-174. doi: 10.3969/j.issn.1672-1926.2005.02.007

    CrossRef Google Scholar

    [27] Yang S X, Zhang M, Liang J Q, et al. Preliminary results of China's third gas hydrate drilling expedition: a critical step from discovery to development in the South China Sea [J]. Fire in the Ice, 2015, 15: 1-5.

    Google Scholar

    [28] Zhang H Q, Yang S X, Wu N Y, et al. Successful and surprising results for China's first gas hydrate drilling expedition [J]. Fire in the Ice, 2007, 7(3): 6-9.

    Google Scholar

    [29] 刘杰, 苏明, 乔少华, 等. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨[J]. 沉积学报, 2016, 34(5):940-950

    Google Scholar

    LIU Jie, SU Ming, QIAO Shaohua, et al. Forming mechanism of the slope-confined submarine canyons in the Baiyun sag, Pearl River Mouth Basin [J]. Acta Sedimentologica Sinica, 2016, 34(5): 940-950.

    Google Scholar

    [30] 李华, 王英民, 徐强, 等. 南海北部珠江口盆地重力流与等深流交互作用沉积特征、过程及沉积模式[J]. 地质学报, 2014, 88(6):1120-1129

    Google Scholar

    LI Hua, WANG Yingmin, XU Qiang, et al. Interactions between down-slope and along-slope processes on the northern slope of South China Sea: products, processes, and depositional model [J]. Acta Geologica Sinica, 2014, 88(6): 1120-1129.

    Google Scholar

    [31] 付超, 于兴河, 梁金强, 等. 南海北部神狐海域不同类型水道及其天然气水合物成藏的差异[J]. 海洋地质与第四纪地质, 2017, 37(6):168-177

    Google Scholar

    FU Chao, YU Xinghe, LIANG Jinqiang, et al. Types of sea-bottom channels and related gas hydrate accululations in the Shenhu area, South China Sea (SCS) [J]. Marine Geology and Quaternary Geology, 2017, 37(6): 168-177.

    Google Scholar

    [32] 姜衡, 苏明, 雷新华, 等. 神狐海域海底峡谷群脊部细粒浊积体分布范围及意义[J]. 海洋地质与第四纪地质, 2018, 38(5):52-62

    Google Scholar

    JIANG Heng, SU Ming, LEI Xinhua, et al. Distribution of fine-grained turbidites on canyon ridges in the Shenhu area of northern South China Sea and its implications [J]. Marine Geology and Quaternary Geology, 2018, 38(5): 52-62.

    Google Scholar

    [33] 李杰, 何敏, 颜承志, 等. 南海北部荔湾3区块天然气水合物分布特征及目标识别[J]. 海洋科学, 2019, 43(5):81-89

    Google Scholar

    LI Jie, HE Min, YAN Chengzhi, et al. The distribution and characteristics of gas hydrate in the Liwan3, northern slope of the South China Sea [J]. Marine Sciences, 2019, 43(5): 81-89.

    Google Scholar

    [34] Kong L T, Chen H H, Ping H W, et al. Formation pressure modeling in the Baiyun Sag, northern South China Sea: Implications for petroleum exploration in deep-water areas [J]. Marine and Petroleum Geology, 2018, 97: 154-168. doi: 10.1016/j.marpetgeo.2018.07.004

    CrossRef Google Scholar

    [35] 柳保军, 庞雄, 王家豪, 等. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义[J]. 石油学报, 2019, 40(S1):124-138 doi: 10.7623/syxb2019S1011

    CrossRef Google Scholar

    LIU Baojun, PANG Xiong, WANG Jiahao, et al. Sedimentary system response process and hydrocarbon exploration significance of crust thinning zone at extensional continental margin of deep-water area in Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2019, 40(S1): 124-138. doi: 10.7623/syxb2019S1011

    CrossRef Google Scholar

    [36] Carman P C. Flow of Gases through Porous Media[M]. New York: Academic Press Inc., 1956.

    Google Scholar

    [37] McKenzie D. Some remarks on the development of sedimentary basins [J]. Earth and Planetary Science Letters, 1978, 40(1): 25-32. doi: 10.1016/0012-821X(78)90071-7

    CrossRef Google Scholar

    [38] 胡圣标, 龙祖烈, 朱俊章, 等. 珠江口盆地地温场特征及构造-热演化[J]. 石油学报, 2019, 40(S1):178-187 doi: 10.7623/syxb2019S1015

    CrossRef Google Scholar

    HU Shengbiao, LONG Zulie, ZHU Junzhang, et al. Characteristics of geothermal field and the tectonic-thermal evolution in Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2019, 40(S1): 178-187. doi: 10.7623/syxb2019S1015

    CrossRef Google Scholar

    [39] 朱俊章, 施和生, 庞雄, 等. 白云深水区东部油气成因来源与成藏特征[J]. 中国石油勘探, 2012, 17(4):20-28 doi: 10.3969/j.issn.1672-7703.2012.04.004

    CrossRef Google Scholar

    ZHU Junzhang, SHI Hesheng, PANG Xiong, et al. Origins and accumulation characteristics of hydrocarbons in eastern Baiyun deepwater area [J]. China Petroleum Exploration, 2012, 17(4): 20-28. doi: 10.3969/j.issn.1672-7703.2012.04.004

    CrossRef Google Scholar

    [40] 张功成, 杨海长, 陈莹, 等. 白云凹陷——珠江口盆地深水区一个巨大的富生气凹陷[J]. 地质勘探, 2014, 34(11):11-25

    Google Scholar

    ZHANG Gongcheng, YANG Haichang, CHEN Ying, et al. The Baiyun sag: A giant rich gas-generation sag in the deepwater area of the Pearl River Mouth Basin [J]. Natural Gas Industry, 2014, 34(11): 11-25.

    Google Scholar

    [41] Burnham A K. A simple kinetic model of petroleum formation and cracking[R]. California, U.S.: Lawrence Livermore National Laboratory, 1989.

    Google Scholar

    [42] Sweeney J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics [J]. AAPG Bulletin, 1990, 74(10): 1559-1570.

    Google Scholar

    [43] Wang X J, Hutchinson D R, Wu S G, et al. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea [J]. Journal of Geophysical Research, 2011, 116: B05102.

    Google Scholar

    [44] Liu C L, Meng Q G, Hu G W, et al. Characterization of hydrate-bearing sediments recovered from the Shenhu area of the South China sea [J]. Interpretation, 2017, 5(3): SM13-SM23. doi: 10.1190/INT-2016-0211.1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(2851) PDF downloads(156) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint