Citation: | XING Congcong, XU Xing. Application of geomagnetic field model to marine magnetic data processing[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 214-221. doi: 10.16562/j.cnki.0256-1492.2020032401 |
The correction of geomagnetic diurnal variation is an important step for marine magnetic data processing. In this paper, the geomagnetic diurnal variation data of a survey area in the western Pacific Ocean was calculated using the integrated model and the IGRF model, and the results were analyzed by comparing with the observation data from the same marine geomagnetic diurnal variation stations. Both of the two kinds of data were used to process the magnetic data for the 15 survey lines in the survey area, and error analyses are made for all the survey lines and their 56 intersections. The results suggest that: (1) When the calculated data is used for the processing of marine magnetic survey data, the accuracy of the intersection points basically meets the requirements of the specifications for marine geological survey before the adjustment, and completely meets the requirements of the specifications for marine geological survey after the adjustment, but the accuracy of the calculated data is lower than the measured data. (2) The calculated diurnal variation curve had higher fitting degree with the measured in magnetostatic condition, while the amplitude difference between them is larger in the case of magnetic disturbance, and correlation coefficient decreased with the enhancement of magnetic disturbance. The model calculated data of K>4 must be used with caution or never be used.
[1] | 安振昌. 区域和全球地磁场模型[J]. 地球物理学进展, 1995, 10(3):63-73 AN Zhenchang. Regional and global geomagnetic field models [J]. Progress in Geophysics, 1995, 10(3): 63-73. |
[2] | 焦新华, 吴燕冈. 重力与磁法勘探[M]. 北京: 地质出版社, 2009. JIAO Xinhua, WU Yangang. Gravity and Magnetic Prospecting[M]. Beijing: Geological Publishing House, 2009. |
[3] | 徐行, 廖开训, 盛堰. 海底地磁日变观测站的设计与应用[J]. 海洋测绘, 2005, 25(1):67-69 doi: 10.3969/j.issn.1671-3044.2005.01.018 XU Xing, LIAO Kaixun, SHENG Yan. Technology and application of the geomagnetism observation mooring system on the seafloor [J]. Hydrographic Surveying and Charting, 2005, 25(1): 67-69. doi: 10.3969/j.issn.1671-3044.2005.01.018 |
[4] | 廖开训, 徐行, 王功祥, 等. 不同方式地磁观测数据对磁测精度的影响分析[J]. 海洋测绘, 2017, 37(5):22-25 doi: 10.3969/j.issn.1671-3044.2017.05.004 LIAO Kaixun, XU Xing, WANG Gongxiang, et al. Analysis of effects made by using different geomagnetic observation data upon magnetic measurement precision [J]. Hydrographic Surveying and Charting, 2017, 37(5): 22-25. doi: 10.3969/j.issn.1671-3044.2017.05.004 |
[5] | 徐行, 赵旭东, 王功祥, 等. 南海西南次海盆深海地磁观测潜标的数据分析[J]. 地球物理学报, 2017, 60(3):1179-1188 doi: 10.6038/cjg20170328 XU Xing, ZHAO Xudong, WANG Gongxiang, et al. Analysis of data from the deep-sea geomagnetic observation buoy in the southwest Subbasin of the South China Sea [J]. Chinese Journal of Geophysics, 2017, 60(3): 1179-1188. doi: 10.6038/cjg20170328 |
[6] | 高金耀, 刘强, 翟国君, 等. 与海洋地磁日变改正有关的长期变化和磁扰的处理[J]. 海洋学报, 2009, 31(4):87-92 GAO Jinyao, LIU Qiang, ZHAI Guojun, et al. Processing of secular variation and disturbance related to marine geomagnetic diurnal variation correction [J]. Acta Oceanologica Sinica, 2009, 31(4): 87-92. |
[7] | Sager W W, Huang Y M, Tominaga M, et al. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies [J]. Nature Geoscience, 2019, 12(8): 661-666. doi: 10.1038/s41561-019-0390-y |
[8] | 徐文耀. 地磁活动K指数值量算和确定方法的改进[J]. 西北地震学报, 2005, 27(S1):36-41 XU Wenyao. Improvement of scaling and evaluating of K index [J]. Northwestern Seismological Journal, 2005, 27(S1): 36-41. |
[9] | 严大华, 周锦屏. K指数测量及其意义[J]. 地震地磁观测与研究, 1984, 5(4):11-17, 30 YAN Dahua, ZHOU Jinping. K index measurement and its significance [J]. Seismological and Geomagnetic Observation and Research, 1984, 5(4): 11-17, 30. |
[10] | 冯彦, 安振昌, 孙涵, 等. 利用地磁场综合模型CM4分析中国大陆地区地磁场变化[J]. 物理学报, 2010, 59(12):8941-8953 doi: 10.7498/aps.59.8941 FENG Yan, AN Zhenchang, SUN Han, et al. Analysis of variation in geomagnetic field of Chinese mainland based on comprehensive model CM4 [J]. Acta Physica Sinica, 2010, 59(12): 8941-8953. doi: 10.7498/aps.59.8941 |
[11] | 李细顺, 高登平, 李琪, 等. CM4模型数据与台站实测数据的对比研究[J]. 震灾防御技术, 2015, 10(2):418-425 doi: 10.11899/zzfy20150223 LI Xishun, GAO Dengping, LI Qi, et al. Comparison of CM4 model data and the measured data of the station [J]. Technology for Earthquake Disaster Prevention, 2015, 10(2): 418-425. doi: 10.11899/zzfy20150223 |
[12] | 冯春. Matlab实现IGRF国际地磁参考场模型的计算[J]. 内蒙古石油化工, 2014(12):43-46 doi: 10.3969/j.issn.1006-7981.2014.12.018 FENG Chun. International geomagnetic reference field model (IGRF) calculated by Matlab [J]. Inner Mongolia Petrochemical Industry, 2014(12): 43-46. doi: 10.3969/j.issn.1006-7981.2014.12.018 |
[13] | 柴松均, 陈曙东, 张爽. 国际地磁参考场的计算与软件实现[J]. 吉林大学学报: 信息科学版, 2015, 33(3):280-285 CHAI Songjun, CHEN Shudong, ZHANG Shuang. Calculation and software realization of international geomagnetic reference field [J]. Journal of Jilin University: Information Science Edition, 2015, 33(3): 280-285. |
[14] | Sabaka T J, Olsen N, Langel R A. A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3 [J]. Geophysical Journal International, 2002, 151(1): 32-68. doi: 10.1046/j.1365-246X.2002.01774.x |
[15] | Sabaka T J, Olsen N, Purueker M E. Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data [J]. Geophysical Journal International, 2004, 159(2): 521-547. doi: 10.1111/j.1365-246X.2004.02421.x |
[16] | 邢琮琮, 徐行, 陆镜辉, 等. 南海北部陆海台站地磁观测与磁场模型计算的对比分析[J]. 华南地震, 2019, 39(4):60-68 XING Congcong, XU Xing, LU Jinghui, et al. Comparative analysis of geomagnetic observation and magnetic field model calculation for land and marine stations in the northern South China Sea [J]. South China Journal of Seismology, 2019, 39(4): 60-68. |
[17] | GJB 7537-2012海洋磁力测量要求[S]. 2012. GJB 7537-2012 Specification for marine magnetic survey[S]. 2012. |
[18] | 任来平, 王耿峰, 张哲, 等. 海洋磁力仪性能指标分析与测试[J]. 海洋测绘, 2016, 36(6):38-42 doi: 10.3969/j.issn.1671-3044.2016.06.009 REN Laiping, WANG Gengfeng, ZHANG Zhe, et al. Test and analysis of marine magnetometer performance [J]. Hydrographic Surveying and Charting, 2016, 36(6): 38-42. doi: 10.3969/j.issn.1671-3044.2016.06.009 |
[19] | 常国宾, 边少锋. 海洋测量交叉点误差分析(一): 交叉点误差的确定[J]. 海洋测绘, 2015, 35(4):1-6 doi: 10.3969/j.issn.1671-3044.2015.04.001 CHANG Guobin, BIAN Shaofeng. Analysis of crossover errors in marine surveys, Part Ⅰ: The determination of crossover errors [J]. Hydrographic Surveying and Charting, 2015, 35(4): 1-6. doi: 10.3969/j.issn.1671-3044.2015.04.001 |
[20] | 王庚. 地磁Kp指数现报模式及全球K指数分布预报模式[D]. 中国科学院大学硕士学位论文, 2015. WANG Geng. Algorithm for nowcast of Kp index and a model for forecast of global K index distribution[D]. Master Dissertation of University of Chinese Academy of Sciences, 2015. |
[21] | 黄林峰, 黄江, 邓柏昌, 等. 利用单台地磁数据估算Ap和Kp指数的可行性分析[J]. 地震地磁观测与研究, 2011, 32(3):45-51 doi: 10.3969/j.issn.1003-3246.2011.03.008 HUANG Linfeng, HUANG Jiang, DENG Baichang, et al. The feasibility analysis of the Ap and Kp indices estimated using the geomagnetic data of a single station [J]. Seismological and Geomagnetic Observation and Research, 2011, 32(3): 45-51. doi: 10.3969/j.issn.1003-3246.2011.03.008 |
The structure of geomagnetic diurnal observatory
Location of the geomagnetic diurnal observatory
The processing flow chart of marine magnetic data
Comparison of geomagnetic diurnal variation curves (The red line is the calculated curve, the blue line is the measured curve, and the black line is the K index; The dotted lines of a, b, and c are those showing typical details)
Comparison of diurnal variation curve details (The red line is the calculated curve, the blue line is the measured curve, and the black line is the curve of K index)
Magnetic anomaly comparison of survey line (The red line is the magnetic anomaly curve of the model, the blue line is the measured magnetic anomaly curve, and the black line is the K index)
Absolute value analysis of difference between two magnetic anomalies (The red line is the absolute value curve of magnetic anomaly difference, and the black line is K index)
Comparison of intersection difference (The red value on the upper right of the intersection point is the model intersection point difference, and the blue value on the upper left is the measured intersection point difference)