2021 Vol. 41, No. 2
Article Contents

ZHU Wenbo, ZHANG Xunhua, QU Zhongdang, HUANG Zhengqing, WANG Xiuqi, DING Dalin. REE composition and its geological implications of the Hetang Formation mudstones in the East Jiangxi and west Zhejiang, China[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 88-99. doi: 10.16562/j.cnki.0256-1492.2020031201
Citation: ZHU Wenbo, ZHANG Xunhua, QU Zhongdang, HUANG Zhengqing, WANG Xiuqi, DING Dalin. REE composition and its geological implications of the Hetang Formation mudstones in the East Jiangxi and west Zhejiang, China[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 88-99. doi: 10.16562/j.cnki.0256-1492.2020031201

REE composition and its geological implications of the Hetang Formation mudstones in the East Jiangxi and west Zhejiang, China

More Information
  • The provenance, tectonic setting and sedimentary environment of the Lower Cambrian black shale named Hetang Formation in the east Jiangxi and west Zhejiang of the Lower Yangtze platform are studied in this paper. Characteristics of rare earth elements (REEs) are revealed from 22 outcrop samples and 15 core samples of the Well ZJD-1. It suggests that the total amount of rare earth elements in the Hetang Formation of the study area vary substantially from 16.83 to 321.22×10−6, with a lowest mean value around 103.11×10−6. Light rare-earth elements are obviously enriched and differentiated, while the heavy rare-earth elements deficit and poorly differentiated. Commonly observed are negative Ce and positive Eu anomalies. Combined with previous researches, we reached the followings as conclusions. (1) The Hetang Formation was deposited in a rift basin with anoxic water along a passive continental margin tectonically. The provenance of the sediments was jointly controlled by the terrestrial source and the outputs from seawater and hydrothermal fluid. The region of Hengfeng and Shangrao is little affected by terrigenous debris, but substantially influenced by the materials from hydrothermal fluid and seawater, and the region of Changshan and Jiangshan is just the opposite. (2) The Hetang Formation is obviously affected by hydrothermal activities, and the low temperature hydrothermal activity is favorable for the deposition and enrichment of organic matters. The hydrothermal activity was centered at Shangrao, with decreasing influence from west to east.

  • 加载中
  • [1] Henderson P. Rare Earth Element Geochemistry[M]. Amsterdam: Elsevier, 2013.

    Google Scholar

    [2] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell, 1985.

    Google Scholar

    [3] Murray R W, Brink M R B T, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale [J]. Geology, 1990, 18(3): 268-271. doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2

    CrossRef Google Scholar

    [4] Murray R W, Brink M R B T, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments [J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1875-1895. doi: 10.1016/0016-7037(91)90030-9

    CrossRef Google Scholar

    [5] 陈德潜, 陈刚. 实用稀土元素地球化学[M]. 北京: 冶金工业出版社, 1990: 135-206.

    Google Scholar

    CHEN Deqian, CHEN Gang. Practical REE Geochemistry[M]. Beijing: Metallurgical Industry Press, 1990: 135-206.

    Google Scholar

    [6] Sylvestre G, Laure N T E, Djibril K N G, et al. A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: constraints from petrography and geochemistry [J]. Ore Geology Reviews, 2017, 80: 860-875. doi: 10.1016/j.oregeorev.2016.08.021

    CrossRef Google Scholar

    [7] 魏国齐, 杜金虎, 徐春春, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J]. 石油学报, 2015, 36(1):1-12 doi: 10.7623/syxb201501001

    CrossRef Google Scholar

    WEI Guoqi, DU Jinhu, XU Chunchun, et al. Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti-Moxi region, Sichuan Basin [J]. Acta Petrolei Sinica, 2015, 36(1): 1-12. doi: 10.7623/syxb201501001

    CrossRef Google Scholar

    [8] Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ) [J]. Petroleum Exploration and Development, 2016, 43(2): 182-196. doi: 10.1016/S1876-3804(16)30022-2

    CrossRef Google Scholar

    [9] 李娟, 于炳松, 郭峰. 黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析[J]. 沉积学报, 2013, 31(1):20-31

    Google Scholar

    LI Juan, YU Bingsong, GUO Feng. Depositional setting and tectonic background analysis on Lower Cambrian Black Shales in the North of Guizhou Province [J]. Acta Sedimentologica Sinica, 2013, 31(1): 20-31.

    Google Scholar

    [10] 曹婷婷, 徐思煌, 王约. 川东北下寒武统筇竹寺组稀土元素特征及其地质意义——以南江杨坝剖面为例[J]. 石油实验地质, 2018, 40(5):716-723 doi: 10.11781/sysydz201805716

    CrossRef Google Scholar

    CAO Tingting, XU Sihuang, WANG Yue. Characteristics of rare earth elements in Lower Cambrian Qiongzhusi Formation in northeastern Sichuan Basin and its geological implications: a case study of Yangba section, Nanjiang [J]. Petroleum Geology and Experiment, 2018, 40(5): 716-723. doi: 10.11781/sysydz201805716

    CrossRef Google Scholar

    [11] 贾智彬, 侯读杰, 孙德强, 等. 热水沉积区黑色页岩稀土元素特征及其地质意义——以贵州中部和东部地区下寒武统牛蹄塘组页岩为例[J]. 天然气工业, 2018, 38(5):44-51 doi: 10.3787/j.issn.1000-0976.2018.05.005

    CrossRef Google Scholar

    JIA Zhibin, HOU Dujie, SUN Deqiang, et al. Characteristics and geological implications of rare earth elements in black shale in hydrothermal sedimentation areas: a case study from the Lower Cambrian Niutitang Fm shale in central and eastern Guizhou [J]. Natural Gas Industry, 2018, 38(5): 44-51. doi: 10.3787/j.issn.1000-0976.2018.05.005

    CrossRef Google Scholar

    [12] 谢国梁, 刘水根, 沈玉林, 等. 赣东北荷塘组页岩气成藏条件及有利区评价[J]. 中国矿业大学学报, 2015, 44(4):704-713

    Google Scholar

    XIE Guoliang, LIU Shuigen, SHEN Yulin, et al. Reservoir-forming conditions and favorable areas evaluation of shale gas reservoir in Hetang formation, northeastern Jiangxi area [J]. Journal of China University of Mining & Technology, 2015, 44(4): 704-713.

    Google Scholar

    [13] 付常青, 朱炎铭, 陈尚斌. 浙西荷塘组页岩孔隙结构及分形特征研究[J]. 中国矿业大学学报, 2016, 45(1):77-86

    Google Scholar

    FU Changqing, ZHU Yanming, CHEN Shangbin. Pore structure and fractal features of Hetang formation shale in western Zhejiang [J]. Journal of China University of Mining & Technology, 2016, 45(1): 77-86.

    Google Scholar

    [14] 樊佳莉. 下扬子地区下寒武统富有机质页岩的岩相与沉积环境[J]. 地质科技情报, 2017, 36(5):156-163

    Google Scholar

    FAN Jiali. Lithofacies and depositional setting of the lower cambrian organic-rich shale of the lower Yangtze Region, China [J]. Geological Science and Technology Information, 2017, 36(5): 156-163.

    Google Scholar

    [15] 黄正清, 周道容, 李建青, 等. 下扬子地区寒武系页岩气成藏条件分析与资源潜力评价[J]. 石油实验地质, 2019, 41(1):94-98 doi: 10.11781/sysydz201901094

    CrossRef Google Scholar

    HUANG Zhengqing, ZHOU Daorong, LI Jianqing, et al. Shale gas accumulation conditions and resource potential evaluation of the Cambrian in the Lower Yangtze area [J]. Petroleum Geology and Experiment, 2019, 41(1): 94-98. doi: 10.11781/sysydz201901094

    CrossRef Google Scholar

    [16] 薛耀松, 俞从流. 浙西、赣东北寒武系下统荷塘组岩石特征及沉积环境分析[J]. 地层学杂志, 1979, 3(4):283-293

    Google Scholar

    XUE Yaosong, YU Congliu. The analysis of rocks features and sedimentary of Lower Cambrian Hetang formation in west Zhejiang-northeast of Jiangxi [J]. Journal of Stratigraphy, 1979, 3(4): 283-293.

    Google Scholar

    [17] 曾子轩. 浙西北下寒武统荷塘组硅质(页)岩成因及沉积环境研究[D]. 浙江大学硕士学位论文, 2019: 13-31.

    Google Scholar

    ZENG Zixuan. Research on origin and sedimentary environment of lower cambrian of hetang formation cherts in northwestern Zhejiang, China[D]. Master Dissertation of Zhejiang University, 2019: 13-31.

    Google Scholar

    [18] 刘计勇, 张飞燕, 印燕铃. 下扬子下寒武统岩相古地理及烃源岩条件研究[J]. 海洋地质与第四纪地质, 2018, 38(3):85-95

    Google Scholar

    LIU Jiyong, ZHANG Feiyan, YIN Yanling. Lithofacies and paleogeographic study on late Cambrian hydrocarbon source rocks in Lower Yangtze region [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 85-95.

    Google Scholar

    [19] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109.

    Google Scholar

    [20] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [21] Murray R W, Brink M R B T, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: assessing the influence of chemical fractionation during diagenesis [J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2657-2671. doi: 10.1016/0016-7037(92)90351-I

    CrossRef Google Scholar

    [22] Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4

    CrossRef Google Scholar

    [23] Bolhar R, van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates [J]. Precambrian Research, 2007, 155(3-4): 229-250. doi: 10.1016/j.precamres.2007.02.002

    CrossRef Google Scholar

    [24] Yu Z H, Li H M, Li M X, et al. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean [J]. Journal of Marine Systems, 2018, 180: 173-181. doi: 10.1016/j.jmarsys.2016.11.013

    CrossRef Google Scholar

    [25] Kato Y, Nakao K, Isozaki Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change [J]. Chemical Geology, 2002, 182(1): 15-34. doi: 10.1016/S0009-2541(01)00273-X

    CrossRef Google Scholar

    [26] 赵彦彦, 李三忠, 李达, 等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学, 2019, 43(1):141-167

    Google Scholar

    ZHAO Yanyan, LI Sanzhong, LI Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications [J]. Geotectonica et Metallogenia, 2019, 43(1): 141-167.

    Google Scholar

    [27] Allègre C, Minster J F. Quantitative models of trace element behavior in magmatic processes [J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25. doi: 10.1016/0012-821X(78)90123-1

    CrossRef Google Scholar

    [28] Kunzendorf H, Stoffers P, Gwozdz R. Regional variations of REE patterns in sediments from active plate boundaries [J]. Marine Geology, 1988, 84(3-4): 191-199. doi: 10.1016/0025-3227(88)90100-4

    CrossRef Google Scholar

    [29] Sugahara H, Sugitani K, Mimura K, et al. A systematic rare-earth elements and yttrium study of Archean cherts at the Mount Goldsworthy greenstone belt in the Pilbara Craton: implications for the origin of microfossil-bearing black cherts [J]. Precambrian Research, 2010, 177(1-2): 73-87. doi: 10.1016/j.precamres.2009.10.005

    CrossRef Google Scholar

    [30] Nozaki Y, Zhang J and Amakawa H. The fractionation between Y and Ho in the marine environment [J]. Earth and Planetary Science Letters, 1997, 148(1-2): 329-340. doi: 10.1016/S0012-821X(97)00034-4

    CrossRef Google Scholar

    [31] 杨宗玉, 罗平, 刘波, 等. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异及成因[J]. 岩石学报, 2017, 33(6):1893-1918

    Google Scholar

    YANG Zongyu, LUO Ping, LIU Bo, et al. The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim Basin, Northwest China [J]. Acta Petrologica Sinica, 2017, 33(6): 1893-1918.

    Google Scholar

    [32] Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa [J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 378-394. doi: 10.1016/j.gca.2007.10.028

    CrossRef Google Scholar

    [33] Johannessen K C, Vander Roost J, Dahle H, et al. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields [J]. Geochimica et Cosmochimica Acta, 2017, 202: 101-123. doi: 10.1016/j.gca.2016.12.016

    CrossRef Google Scholar

    [34] Murray R W. Chemical criteria to identify the depositional environment of chert: general principles and applications [J]. Sedimentary Geology, 1994, 90(3-4): 213-232. doi: 10.1016/0037-0738(94)90039-6

    CrossRef Google Scholar

    [35] 钱建民, 李海亭, 徐岳行, 等. 扬子地台东南缘黑色岩系(荷塘组)地球化学研究[J]. 矿物岩石, 2010, 30(2):95-102 doi: 10.3969/j.issn.1001-6872.2010.02.016

    CrossRef Google Scholar

    QIAN Jianmin, LI Haiting, XU Yuehang, et al. Study on the geochemical characteristics of black rock series from the Hetang Formation in southeast margin of Yangtze Platform [J]. Journal of Mineralogy and Petrology, 2010, 30(2): 95-102. doi: 10.3969/j.issn.1001-6872.2010.02.016

    CrossRef Google Scholar

    [36] Pirajno F, Grey K. Chert in the Palaeoproterozoic Bartle Member, Killara Formation, Yerrida Basin, Western Australia: a rift-related playa lake and thermal spring environment? [J]. Precambrian Research, 2002, 113(3-4): 169-192. doi: 10.1016/S0301-9268(01)00196-6

    CrossRef Google Scholar

    [37] Wang J G, Chen D Z, Wang D, et al. Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran–Cambrian transition [J]. Sedimentology, 2012, 59(3): 809-829. doi: 10.1111/j.1365-3091.2011.01280.x

    CrossRef Google Scholar

    [38] Zhou L, Wang Z X, Gao W L, et al. Provenance and tectonic setting of the Lower Cambrian Niutitang formation shales in the Yangtze platform, South China: implications for depositional setting of shales [J]. Geochemistry, 2019, 79(2): 384-398. doi: 10.1016/j.chemer.2019.05.001

    CrossRef Google Scholar

    [39] Planavsky N, Bekker A, Rouxel O J, et al. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition [J]. Geochimica et Cosmochimica Acta, 2010, 74(22): 6387-6405. doi: 10.1016/j.gca.2010.07.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(1034) PDF downloads(22) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint