Citation: | LI Wenjian, WANG Zhenyan, HUANG Haijun. Grain size distribution pattern and influencing factors of suspended matters in the Southern Yellow Sea during summer season[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 49-60. doi: 10.16562/j.cnki.0256-1492.2020011002 |
The Southern Yellow Sea is an important passage for transporting terrigenous materials from the East Asian continent to the western Pacific Ocean. It is of great significance to clarify the size and distribution patterns of the particles transported through the Southern Yellow Sea for further understanding the source to sink system of the region. In this paper, we analyzed the grain size distribution and its influencing factors based on the hydrological and LISST data measured in the Southern Yellow Sea during the summer season of 2012. The results show that fine particles (≤128 μm) are mainly composed of inorganic particles, while the coarse (>128 μm) dominated by organic particles during the summer season. The inorganic particles are mainly distributed in the well-mixed coastal shallow area and the bottom layer offshore, while organic particles mainly occupy the pycnocline where the water is highly stratified. The resuspended surface sediment is the main source of inorganic particles, and the tidal mixing process is the main driving force of resuspension. The tidal mixing front prevents the coastal inorganic particles from spreading to the offshore area in bottom layer, but some finer particles (<16 μm) can be transported to the central Southern Yellow Sea by surface cross-front currents. The pycnocline obstructs the upward diffusion of nutrients inside the Yellow Sea Cold Water Mass, which leads to the accumulation of phytoplankton in the pycnocline. The coarse particles (>128 μm) are mainly from the plankton or aggregates formed by organic secretion mixed with fine inorganic particles. The formation of aggregates enhances the sedimentation of surface fine inorganic particles and promotes the formation of mud deposits.
[1] | Milliman J D, Farnsworth K L. Runoff, erosion, and delivery to the coastal ocean[M]. Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge: Cambridge University Press, 2011: 13-69. |
[2] | Bian C W, Jiang W S, Quan Q, et al. Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011 [J]. Journal of Marine Systems, 2013, 121-122: 24-35. doi: 10.1016/j.jmarsys.2013.03.013 |
[3] | Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea [J]. Marine Geology, 2017, 390: 270-281. doi: 10.1016/j.margeo.2017.06.004 |
[4] | Wang Y H, Li G X, Zhang W G, et al. Sedimentary environment and formation mechanism of the mud deposit in the central South Yellow Sea during the past 40 kyr [J]. Marine Geology, 2014, 347: 123-135. doi: 10.1016/j.margeo.2013.11.008 |
[5] | Hu B Q, Li J, Zhao J T, et al. Sr–Nd isotopic geochemistry of Holocene sediments from the South Yellow Sea: implications for provenance and monsoon variability [J]. Chemical Geology, 2018, 479: 102-112. doi: 10.1016/j.chemgeo.2017.12.033 |
[6] | Yang Z S, Ji Y J, Bi N S, et al. Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison [J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 173-181. doi: 10.1016/j.ecss.2010.06.005 |
[7] | Wang H J, Wang A M, Bi N S, et al. Seasonal distribution of suspended sediment in the Bohai Sea, China [J]. Continental Shelf Research, 2014, 90: 17-32. doi: 10.1016/j.csr.2014.03.006 |
[8] | Milliman J D, Li F, Zhao Y Y, et al. Suspended matter regime in the Yellow Sea [J]. Progress in Oceanography, 1986, 17(3-4): 215-227. doi: 10.1016/0079-6611(86)90045-5 |
[9] | Lee H J, Chough S K. Sediment distribution, dispersal and budget in the Yellow Sea [J]. Marine Geology, 1989, 87(2-4): 195-205. doi: 10.1016/0025-3227(89)90061-3 |
[10] | Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea [J]. Marine Geology, 1991, 98(1): 51-72. doi: 10.1016/0025-3227(91)90035-3 |
[11] | Park Y A, Khim B K. Origin and dispersal of recent clay minerals in the Yellow Sea [J]. Marine Geology, 1992, 104(1-4): 205-213. doi: 10.1016/0025-3227(92)90095-Y |
[12] | Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008 |
[13] | 余佳, 王厚杰, 毕乃双, 等. 基于MODIS L1B数据的黄海悬浮体季节性分布的反演[J]. 海洋地质与第四纪地质, 2014, 34(1):1-9 YU Jia, WANG Houjie, BI Naishuang, et al. Seasonal distribution and variation of suspended sediment in the Yellow Sea in 2010 based on retrieved monthly data from MODIS L1B imagery [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 1-9. |
[14] | 刘琳, 王珍岩. 山东半岛沿岸海域悬浮体时空分布及形成机制分析[J]. 海洋科学, 2019, 43(10):55-65 LIU Lin, WANG Zhenyan. Temporal and spatial distributions and formation mechanism of suspended sediment in the coastal area of the Shandong Peninsula [J]. Marine Science, 2019, 43(10): 55-65. |
[15] | Gao S, Park Y A, Zhao Y Y. Transport and resuspension of fine-grained sediments over the southeastern Yellow Sea[C]//Proceedings of the Korea–China International Seminar on Holocene and Late Pleistocene Environments in the Yellow Sea Basin. Seoul: Seoul National University Press, 1996: 83-98. |
[16] | Li W J, Wang Z Y, Huang H J. Indication of size distribution of suspended particulate matter for sediment transport in the South Yellow Sea [J]. Estuarine, Coastal and Shelf Science, 2020, 235: 106619. doi: 10.1016/j.ecss.2020.106619 |
[17] | Zhou C Y, Dong P, Li G X. Hydrodynamic processes and their impacts on the mud deposit in the Southern Yellow Sea [J]. Marine Geology, 2015, 360: 1-16. doi: 10.1016/j.margeo.2014.11.012 |
[18] | Li G X, Qiao L L, Dong P, et al. Hydrodynamic condition and suspended sediment diffusion in the Yellow Sea and East China Sea [J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6204-6222. doi: 10.1002/2015JC011442 |
[19] | Hu D X. Upwelling and sedimentation dynamics [J]. Chinese Journal of Oceanology and Limnology, 1984, 2(1): 12-19. doi: 10.1007/BF02888388 |
[20] | Qu T D, Hu D X. Upwelling and sedimentation dynamics [J]. Chinese Journal of Oceanology and Limnology, 1993, 11(4): 289-295. doi: 10.1007/BF02850633 |
[21] | 董礼先, 苏纪兰, 王康墡. 黄渤海潮流场及其与沉积物搬运的关系[J]. 海洋学报, 1989, 8(4):587-600 DONG Lixian, SU Jilan, WANG Kangshan. The relationship between tidal current field and sediment transport in the Huanghai Sea and the Bohai Sea [J]. Acta Oceanologica Sinica, 1989, 8(4): 587-600. |
[22] | Zhu Y, Chang R. Preliminary study of the dynamic origin of the distribution pattern of bottom sediments on the continental shelves of the Bohai Sea, Yellow Sea and East China Sea [J]. Estuarine, Coastal and Shelf Science, 2000, 51(5): 663-680. doi: 10.1006/ecss.2000.0696 |
[23] | 翟世奎, 张怀静, 范德江, 等. 长江口及其邻近海域悬浮物浓度和浊度的对应关系[J]. 环境科学学报, 2005, 25(5):693-699 doi: 10.3321/j.issn:0253-2468.2005.05.022 ZHAI Shikui, ZHANG Huaijing, FAN Dejiang, et al. Corresponding relationship between suspended matter concentration and turbidity on Changjiang Estuary and adjacent sea area [J]. Acta Scientiae Circumstantiae, 2005, 25(5): 693-699. doi: 10.3321/j.issn:0253-2468.2005.05.022 |
[24] | 王珍岩, 张洪格, 高微. 冬季西太平洋雅浦海山(Y3)区次表层叶绿素最大值层分布及其对悬浮体粒度的影响[J]. 海洋与湖沼, 2017, 48(6):1404-1414 doi: 10.11693/hyhz20170300073 WANG Zhenyan, ZHANG Hongge, GAO Wei. Subsurface chlorophyll maximum layer in Yap (Y3) seamount area in the western Pacific during winter: distribution and influence on particle size distribution of suspended particulate matter [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1404-1414. doi: 10.11693/hyhz20170300073 |
[25] | Agrawal Y C, Pottsmith H C. Instruments for particle size and settling velocity observations in sediment transport [J]. Marine Geology, 2000, 168(1-4): 89-114. doi: 10.1016/S0025-3227(00)00044-X |
[26] | Oh K H, Lee S, Song K M, et al. The temporal and spatial variability of the Yellow Sea Cold Water Mass in the southeastern Yellow Sea, 2009-2011 [J]. Acta Oceanologica Sinica, 2013, 32(9): 1-10. doi: 10.1007/s13131-013-0346-9 |
[27] | Zhang K N, Wang Z Y, Li W J, et al. Properties of coarse particles in suspended particulate matter of the North Yellow Sea during summer [J]. Journal of Oceanology and Limnology, 2019, 37(1): 79-92. doi: 10.1007/s00343-019-7153-x |
[28] | McLaren P, Bowles D. The effects of sediment transport on grain-size distributions [J]. Journal of Sedimentary Research, 1985, 55(4): 457-470. |
[29] | 石学法. 中国近海海洋—海洋底质[M]. 北京: 海洋出版社, 2014. SHI Xuefa. China Coastal Seas-Marine Sediment[M]. Beijing: China Ocean Press, 2014. |
[30] | 刘强, 项立辉, 张刚, 等. 苏北废黄河口表层沉积物分布特征及其控制因素[J]. 海洋地质与第四纪地质, 2018, 38(1):118-126 LIU Qiang, XIANG Lihui, ZHANG Gang, et al. Distribution pattern of surface sediments around the abandoned Yellow River estuary of North Jiangsu Province and its controlling factors [J]. Marine Geology & Quaternary Geology, 2018, 38(1): 118-126. |
[31] | 邢飞, 汪亚平, 高建华, 等. 江苏近岸海域悬沙浓度的时空分布特征[J]. 海洋与湖沼, 2010, 41(3):459-468 doi: 10.11693/hyhz201003025025 XING Fei, WANG Yaping, GAO Jianhua, et al. Seasonal distributions of the concentrations of suspended sediment along Jiangsu coastal sea [J]. Oceanologia et Limnologia Sinica, 2010, 41(3): 459-468. doi: 10.11693/hyhz201003025025 |
[32] | Wang X H, Qiao F L, Lu J, et al. The turbidity maxima of the northern Jiangsu shoal-water in the Yellow Sea, China [J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 202-211. doi: 10.1016/j.ecss.2010.10.020 |
[33] | Xing F, Wang Y P, Wang H V. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea [J]. Marine Geology, 2012, 291-294: 192-210. doi: 10.1016/j.margeo.2011.06.006 |
[34] | 万新宁, 李九发, 沈焕庭. 长江口外海滨典型断面悬沙通量计算[J]. 泥沙研究, 2004(6):64-70 doi: 10.3321/j.issn:0468-155X.2004.06.012 WAN Xinyu, LI Jiufa, SHEN Huanting. Suspended sediment flux at the typical cross sections in the offshore area of Changjiang Estuary [J]. Journal of Sediment Research, 2004(6): 64-70. doi: 10.3321/j.issn:0468-155X.2004.06.012 |
[35] | 庞重光, 于炜, 杨扬. 长江口海域悬浮物的粒度特征与成因分析[J]. 环境科学, 2010, 31(3):618-625 PANG Chongguang, YU Wei, YANG Yang. Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang estuary [J]. Environmental Science, 2010, 31(3): 618-625. |
[36] | Engel A. The role of Transparent Exopolymer Particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom [J]. Journal of Plankton Research, 2000, 22(3): 485-497. doi: 10.1093/plankt/22.3.485 |
[37] | Passow U. Transparent Exopolymer Particles (TEP) in aquatic environments [J]. Progress in Oceanography, 2002, 55(3-4): 287-333. doi: 10.1016/S0079-6611(02)00138-6 |
[38] | Song J M, Duan L Q. The Yellow Sea[M]//Sheppard C. World Seas: An Environmental Evaluation. London: Academic Press, 2019. |
[39] | Dong L X, Guan W B, Chen Q, et al. Sediment transport in the Yellow Sea and East China Sea [J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 248-258. doi: 10.1016/j.ecss.2011.04.003 |
[40] | 海洋图集编委会. 渤海黄海东海海洋图集-水文[M]. 北京: 海洋出版社, 1992: 436-437, 429. EBMA (Editorial Board of Marine Atlas). Marine atlas of Bohai Sea Yellow Sea East China Sea[M]. Beijing: China Ocean Press, 1992: 436-437, 429. |
[41] | Yuan D L, Zhu J R, Li C Y, et al. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations [J]. Journal of Marine Systems, 2008, 70(1-2): 134-149. doi: 10.1016/j.jmarsys.2007.04.002 |
[42] | Lü X G, Qiao F L, Xia C S, et al. Upwelling and surface cold patches in the Yellow Sea in summer: effects of tidal mixing on the vertical circulation [J]. Continental Shelf Research, 2010, 30(6): 620-632. doi: 10.1016/j.csr.2009.09.002 |
[43] | 任强. 黄海冷水团海域走航式剖面测量系统(MVP)的应用研究[D]. 中国科学院海洋研究所硕士学位论文, 2014. REN Qiang. Research on the application of Moving Vessel Profile (MVP) in the Yellow Sea cold water mass[D]. Master Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2014. |
[44] | Washburn L, Swenson M S, Largier J L, et al. Cross-shelf sediment transport by an anticyclonic eddy off northern California [J]. Science, 1993, 261(5128): 1560-1564. doi: 10.1126/science.261.5128.1560 |
[45] | Liu X Q, Li Y, Wang Z L, et al. Cruise observation of Ulva prolifera bloom in the southern Yellow Sea, China [J]. Estuarine, Coastal and Shelf Science, 2015, 163: 17-22. doi: 10.1016/j.ecss.2014.09.014 |
[46] | Fu M z, Wang Z L, Li Y, et al. Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): seasonal variability [J]. Continental Shelf Research, 2009, 29(18): 2178-2194. doi: 10.1016/j.csr.2009.08.010 |
[47] | Jin J, Liu S M, Ren J L, et al. Nutrient dynamics and coupling with phytoplankton species composition during the spring blooms in the Yellow Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 97: 16-32. doi: 10.1016/j.dsr2.2013.05.002 |
[48] | 韦钦胜, 傅明珠, 李艳, 等. 南黄海冷水团海域溶解氧和叶绿素最大现象值及营养盐累积的季节演变[J]. 海洋学报, 2013, 35(4):142-154 WEI Qinsheng, FU Mingzhu, LI Yan, et al. Observation of the seasonal evolution of DO, chlorophyll a maximum phenomena and nutrient accumulating in the southern Huanghai (Yellow) Sea Cold Water Mass area [J]. Acta Oceanologica Sinica, 2013, 35(4): 142-154. |
[49] | Wang A J, Ye X, Chen J. Observations and analyses of floc size and floc settling velocity in coastal salt marsh of Luoyuan Bay, Fujian Province, China [J]. Acta Oceanologica Sinica, 2010, 29(3): 116-126. doi: 10.1007/s13131-010-0043-x |
Topography and sampling stations of the study area
Horizontal distribution of temperature ( ℃) and salinity in the study during summer season.
Vertical distribution of temperature (a1—d1, ℃) and salinity (a2—d2) of the study area during summer season
Vertical distribution of MC (a1—d1, mg/L) and chl a concentration (a2—d2, μg/L) of the study area during summer season
Average VC (black solid dots) and correlation between MC and VC (black triangle) of suspended particulate matter in different sizes. The VC was averaged based on all stations and layers
Vertical distribution of total VCs (a1—d1) inorganic (a2—d2) and organic (a3—d3) VCs of the study area during summer season
Particle size distribution in some typical stations
The sediment types in the Southern Yellow Sea (modified from reference [29] )
Vertical distribution of temperature, salinity, chl a, N2 and cumulative frequency distribution of inorganic and organic particles at typical stations
Map of sampling locations, the amphidromic system of the principal M2 constituent, and the elliptical axes of M2 tidal currents in the Southern Yellow Sea
Correlation between the depth of the maximum chl a concentration with the maximum density gradient (a) or TVC (b) during summer season