Citation: | WANG Xingxing, CAI Feng, WU Nengyou, LI Qing, SUN Zhilei, WU Linqiang. Research progress in seamount influence on depositional processes and evolution of deep-water bottom currents[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 68-78. doi: 10.16562/j.cnki.0256-1492.2019111101 |
Seamount is a kind of tectonic geomorphological features widely distributed in the deep sea around the world, where bottom currents persistently exist, thus the interactions between seamounts and bottom currents are very common and will bring about non-negligible influence on deep-water sedimentation and their evolution. This study summarized the global researches on the deep water sedimentation by bottom currents around seamounts, suggesting that deep-water bottom-current hydrodynamics would change under the direct or indirect influence of seamounts, including the changing in flow paths, generation of secondary bottom currents, and variation in ecosystems. Consequently, deep-water sedimentary morphologies and lithofacies would display special distribution patterns. With the evolution of bottom-current hydrodynamics and sedimentary morphologies, deep water sedimentation processes and associated responses would change as well. In summary, bottom currents are complex and special around seamounts, resulting in sedimentary morphologies and lithofacies features as well as distribution patterns differing from those on the open slope. Thus, the sedimentary morphologies and lithofacies formed under bottom currents around seamounts have very particular implications for basin structures and palaeoceanography evolution. However, there is still lack of study concerning the coupling relationship between seamounts and deep water sedimentation processes, greatly limiting deep-sea resource exploration and geo-hazard study, thus more attention is required to be paid to the relationships in the future research of deep-water sedimentology.
[1] | Wessel P, Sandwell D T, Kim S S. The global seamount census [J]. Oceanography, 2010, 23(1): 24-33. doi: 10.5670/oceanog.2010.60 |
[2] | Kim S S, Wessel P. New global seamount census from altimetry-derived gravity data [J]. Geophysical Journal International, 2011, 186(2): 615-631. doi: 10.1111/j.1365-246X.2011.05076.x |
[3] | Hernández-Molina F J, Soto M, Piola A R, et al. Depositional system along the Uruguayan continental margin: sedimentary, oceanographic and paleoceanographic implications [J]. Marine Geology, 2016, 378: 333-349. doi: 10.1016/j.margeo.2015.10.008 |
[4] | Zhang X, Boyer D L. Current deflections in the vicinity of multiple seamounts [J]. Journal of Physical Oceanography, 1991, 21(8): 1122-1138. doi: 10.1175/1520-0485(1991)021<1122:CDITVO>2.0.CO;2 |
[5] | Hernández-Molina F J, Larter R D, Rebesco M, et al. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: stratigraphic evidence from a contourite sedimentary tail [J]. Marine Geology, 2006, 228(1-4): 93-116. doi: 10.1016/j.margeo.2005.12.010 |
[6] | Turnewitsch R, Falahat S, Nycander J, et al. Deep-sea fluid and sediment dynamics—Influence of hill-to seamount-scale seafloor topography [J]. Earth-Science Reviews, 2013, 127: 203-241. doi: 10.1016/j.earscirev.2013.10.005 |
[7] | Chen H, Zhang W, Xie X, et al. Sediment dynamics driven by contour currents and mesoscale eddies along continental slope: A case study of the northern South China Sea [J]. Marine Geology, 2019, 409: 48-66. doi: 10.1016/j.margeo.2018.12.012 |
[8] | Heezen B C, Hollister C D. Deep sea current evidence from abyssal sediments [J]. Marine Geology, 1964, 1(2): 141-174. doi: 10.1016/0025-3227(64)90012-X |
[9] | Zenk M. Abyssal and Contour Currents[M]//Rebesco M, Camerlenghi A, eds. Contourites. Amsterdam, Elsevier, 2008: 37-57. |
[10] | 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义—国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12):1287-1296 doi: 10.11867/j.issn.1001-8166.2017.12.1287 ZHAO Yulong, LIU Zhifei. Spatial distribution of contourites in global ocean and its paleoclimatic significance - The contribution of international ocean drilling to the studies of contourites [J]. Advances in Earth Science, 2017, 32(12): 1287-1296. doi: 10.11867/j.issn.1001-8166.2017.12.1287 |
[11] | Rebesco M, Hernández-Molina F J, Van Rooij D, et al. Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations [J]. Marine Geology, 2014, 352: 111-154. doi: 10.1016/j.margeo.2014.03.011 |
[12] | Thran A C, Dutkiewicz A, Spence P, et al. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model [J]. Earth and Planetary Science Letters, 2018, 489: 228-240. doi: 10.1016/j.jpgl.2018.02.044 |
[13] | Knutz P C. Paleoceanographic significance of contourite drifts[M]// In: Rebesco M, Camerlenghi A (Eds.). Contourites. Developments in Sedimentology, 60. Elsevier, Amsterdam, 2008: 511-535. |
[14] | Viana A R, Almeida W Jr, Nunes M C V, et al. The economic importance of contourites [J]. Geological Society of London Special Publication, 2007, 276(1): 1-23. doi: 10.1144/GSL.SP.2007.276.01.01 |
[15] | Brackenridge R E, Stow D A V, Hernández-Molina F J, et al. Textural characteristics and facies of sand-rich contourite depositional systems [J]. Sedimentology, 2018, 65(7): 2223-2252. doi: 10.1111/sed.12463 |
[16] | Hodgson D M. Distribution and origin of hydbrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa [J]. Marine and Petroleum Geology, 2009, 26: 1940-1956. doi: 10.1016/j.marpetgeo.2009.02.011 |
[17] | Jobe Z, Sylvester Z, Pittaluga M B, et al. Facies architecture of submarine channel deposits on the western Niger Delta slope: Implications for grain-size and density stratification in turbidity currents [J]. Journal of Geophysical Research: Earth Surface, 2017, 122: 473-491. doi: 10.1002/2016JF003903 |
[18] | Taylor G I. Experiments on the motion of solid bodies in rotating fluids [J]. Proceedings of the Royal Society, 1923, 104: 213-218. |
[19] | Boyer D L, Zhang X. Motion of oscillatory currents past isolated topography [J]. Journal of Physical Oceanography, 1990, 20(9): 1425-1448. doi: 10.1175/1520-0485(1990)020<1425:MOOCPI>2.0.CO;2 |
[20] | Bograd S J, Rabinovich A B, LeBlond P H, et al. Observations of seamount‐attached eddies in the North Pacific [J]. Journal of Geophysical Research: Oceans, 1997, 102(C6): 12441-12456. doi: 10.1029/97JC00585 |
[21] | Chapman D C, Haidvogel D B. Formation of Taylor caps over a tall isolated seamount in a stratified ocean [J]. Geophysical and Astrophysical Fluid Dynamics, 1992, 62: 31-65. |
[22] | Roden G I. Effects of seamount chains on ocean circulation and thermohaline structure[C]//In: Keating B H, et al. (Ed.). Seamounts, Islands and Atolls AGU Geophys. Monograph, 1987, 96: 335-354. |
[23] | Roden G I. Mesoscale flow and thermohaline structure around Fieberling Seamount [J]. Journal of Geophysical Research, 1991, 96(C9): 16653-16672. doi: 10.1029/91JC01747 |
[24] | Chapman D C. Enhanced subinertial diurnal tides over isolated topographic features [J]. Deep-sea Research, 1989, 36: 815-824. doi: 10.1016/0198-0149(89)90030-7 |
[25] | Genin A, Noble M, Lonsdale P F. Tidal currents and anticyclonic motions on two North Pacific seamounts [J]. Deep-sea Research, 1989, 36(12): 1803-1815. doi: 10.1016/0198-0149(89)90113-1 |
[26] | Noble M, Mullineaux L S. Internal tidal currents over the summit of cross seamount [J]. Deep-sea research, 1989, 36: 1791-1802. doi: 10.1016/0198-0149(89)90112-X |
[27] | Holloway P E, Merrifield M A. Internal tide generation by seamounts, ridges, and islands [J]. Journal of Geophysical Research, 1999, 104(C11): 25937-25951. doi: 10.1029/1999JC900207 |
[28] | Kasahara A. A mechanism of deep-ocean mixing due to near-inertial waves generated by flow over bottom topography [J]. Dyn Atmos. Oceans, 2010, 49: 124-140. doi: 10.1016/j.dynatmoce.2009.02.002 |
[29] | Gill A E, Atmosphere-Ocean Dynamics[M]. Academic Press, San Diego, 1982: 662. |
[30] | Zhang X, Boye D L. Laboratory study of rotating, stratified, oscillatory flow over a seamount [J]. Journal of Physical Oceanography, 1993, 23(6): 1122-1141. doi: 10.1175/1520-0485(1993)023<1122:LSORSO>2.0.CO;2 |
[31] | Goldner D R, Chapman D C. Flow and particle motion induced above a tall seamount by steady and tidal background currents [J]. Deep-sea Research, 1997, 144(5): 719-744. |
[32] | 刘长建, 庄伟, 夏华永, 等. 2009-2010年冬季南海东北部中尺度过程观测[J]. 海洋学报, 2012, 34(1):8-16 LIU Changjian, ZHUANG Wei, XIA Huayong, et al. Mesoscale observation in the northeast South China Sea during winter 2009-2010 [J]. Acta Oceanologica Sinica, 2012, 34(1): 8-16. |
[33] | 魏泽勋, 郑全安, 杨永增, 等. 中国物理海洋学研究70年:发展历程、学术成就概览[J]. 海洋学报, 2019, 41(10):23-64 WEI Zexun, ZHENG Quanan, YANG Yongzeng, et al. Physical oceanography research in China over past 70 years: Overview of development history and academic achievements [J]. Acta Oceanologica Sinica, 2019, 41(10): 23-64. |
[34] | Adams D K, McGillicuddy D J, Zamudio L, et al. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents [J]. Science, 2011, 332(6029): 580-583. doi: 10.1126/science.1201066 |
[35] | Zhang Y W, Liu Z F, Zhao Y L, et al. Mesoscale eddies transport deep-sea sediments [J]. Scientific Reports, 2014, 4: 5937. |
[36] | Zhao Y, Liu Z, Zhang Y, et al. In situ observation of contour currents in the northern South China Sea: Applications for deepwater sediment transport [J]. Earth and Planetary Science Letters, 2015, 430: 477-485. doi: 10.1016/j.jpgl.2015.09.008 |
[37] | Rogerson M, Schonfeld J, Leng M J, et al. Qualitative and quantitative approaches in palaeohydrography: a case study from core-top parameters in the Gulf of Cadiz [J]. Marine Geology, 2011, 280(1): 150-167. |
[38] | García M, Hernández-Molina F J, Llave E, et al. Contourite erosive features caused by the Mediterranean Outflow Water in the Gulf of Cadiz: Quaternary tectonic and oceanographic implications [J]. Marine Geology, 2009, 257(1-4): 24-40. doi: 10.1016/j.margeo.2008.10.009 |
[39] | Roberts D G, Hogg N G, Bishop D G, et al. Sediment distribution around moated seamounts in the Rockall Trough [J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(3): 175-184. doi: 10.1016/0011-7471(74)90057-6 |
[40] | Howe J A, Stoker M S, Masson D G, et al. Seabed morphology and the bottom-current pathways around Rosemary Bank seamount, northern Rockall Trough, North Atlantic [J]. Marine and Petroleum Geology, 2006, 23(2): 165-181. doi: 10.1016/j.marpetgeo.2005.08.003 |
[41] | Davies T A, Laughton A S. Sedimentary Processes in the North Atlantic[C]// In: Laughton A S, Berggren W A (Eds.). Initial Reports of Deep Sea Drilling Project, 12. U.S. Government Printing Office, Washington D C, 1972: 905-934. |
[42] | 陈慧, 解习农, 毛凯楠. 南海北缘一统暗沙附近深水等深流沉积体系特征[J]. 地球科学—中国地质大学学报, 2015, 40(4):733-743 doi: 10.3799/dqkx.2015.061 CHEN Hui, XIE Xinong, MAO Kainan. Deep-water contourite depositional system in vicinity of Yi’tong Shoal on Northern Margin of the South China Sea [J]. Earth Science – Journal of China University of Geoscience, 2015, 40(4): 733-743. doi: 10.3799/dqkx.2015.061 |
[43] | Hernández-Molina F J, Campbell S, Badalini G, et al. Large bedforms on contourite terraces: Sedimentary and conceptual implications [J]. Geology, 2018, 46(1): 27-30. doi: 10.1130/G39655.1 |
[44] | Stow D A V, Hernández-Molina F J, Llave E, et al. The Cadiz Contourite Channel: Sandy contourites, bedforms and dynamic current interaction [J]. Marine Geology, 2013, 343: 99-114. doi: 10.1016/j.margeo.2013.06.013 |
[45] | Pratt R M. Great meteor seamount [J]. Deep-sea Research, 1963, 10: 17-25. |
[46] | Karig D E, Peterson M N A, Shor G G. Sediment-capped guyots in the Mid-Pacific Mountains [J]. Deep-Sea Research, 1970, 17: 373-378. |
[47] | Levin L A, Nittrouer C A. Textural characteristics of sediments on deep seamounts in the eastern Pacific Ocean between 10°N and 30°N[C]// In: Keating B, Fryer P, Batiza R, et al(eds). Geophysical Monograph 43. American Geophysical Union, Washington, 1987: 187-203. |
[48] | Thiéblemont A, Hernández-Molina F J, Miramontes E, et al. Contourite depositional systems along the Mozambique channel: The interplay between bottom currents and sedimentary processes [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 147: 79-99. doi: 10.1016/j.dsr.2019.03.012 |
[49] | Wang X, Zhuo H, Wang Y, et al. Controls of contour currents on intra-canyon mixed sedimentary processes: Insights from the Pearl River Canyon, northern South China Sea [J]. Marine Geology, 2018, 406: 193-213. doi: 10.1016/j.margeo.2018.09.016 |
[50] | Richardson P L. Anticyclonic eddies generated near Corner Rise seamounts [J]. Journal of Marine Research, 1980, 38: 673-686. |
[51] | Rogers A D. The Biology of seamounts [J]. Advances in Marine Biology, 1994, 30(1): 305-350. |
[52] | Bank J J, Kim D H, Chun J H. Gas hydrate occurrences and their relation to host sediment properties: Results from second Uleung Basin Gas hydrate drilling expedition, East Sea [J]. Marine and Petroleum Geology, 2013, 47: 21-29. doi: 10.1016/j.marpetgeo.2013.05.006 |
[53] | 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学, 2013, 38(5):907-915 doi: 10.3799/dqkx.2013.089 CHEN Fang, SU Xin, LU Hongfeng, et al. Relations between biogenic component (Foraminifera) and Highly saturated gas hydrates distribution from Shenhu Area, Northern South China Sea [J]. Earth Science – Journal of China University of Geoscience, 2013, 38(5): 907-915. doi: 10.3799/dqkx.2013.089 |
[54] | 吴能友, 孙治雷, 卢建国, 等. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质, 2019, 39(5):23-35 WU Nengyou, SUN Zhilei, LU Jianguo, et al. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35. |
[55] | Chen H, Xie X, Van Rooij D, et al. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2014, 355: 36-53. doi: 10.1016/j.margeo.2014.05.008 |
[56] | Vandorpe T, Van Rooij D, De Haas H. Stratigraphy and paleoceanography of a topography-controlled contourite drift in the Pen Duick area, southern Gulf of Cádiz [J]. Marine Geology, 2014, 349: 136-151. doi: 10.1016/j.margeo.2014.01.007 |
Global distribution of bottom currents superimposed with annually mean flow velocity The numbers indicate the sites for the case studies on bottom current around the world, modified from reference [12].
Plan view(A)and vertical cross-channel section(B)for the flow velocity distribution of bottom currents flowing through the axisymmetric hill (The velocity unit in B is m/s, the yellow indicates negative velocity) (Modified from references [21]).
Diagrams showing the flow-field features of bottom currents flowing through seamounts ut indicates the actual flow velocity varied with time, u0 indicates the mean flow velocity, f is the Coriolis parameter, ~10−4/s, D represents the seamount diameter at the seamount base (modified from references [4, 19]).
(A) Bathymetric map for the northern South China Sea; (B) Map of sea level anomaly (SLA) with surface geostrophic current velocity; (C-F) In-situ observed results at the site TJ-A-1 on the Dongsha slope, South China Sea[35]
Diagram for the flow patterns influenced by mesoscale eddies passing through seamount
(A)Schematic block diagram showing the distribution of sedimentary dynamics and the associated morphologies near seamount,(B-D)Horizontal, longitudinal and cross profiles showing the contourite morphologies near seamount[5]
Reworked sands under bottom currents around the seamount on the Dongsha Slope
The diagram showing the hydrodynamics-influenced recruitment of species populations living on seamount[51]
Diagram showing the bottom current sequence evolution around a seamount[55]