2020 Vol. 40, No. 5
Article Contents

WANG Xingxing, CAI Feng, WU Nengyou, LI Qing, SUN Zhilei, WU Linqiang. Research progress in seamount influence on depositional processes and evolution of deep-water bottom currents[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 68-78. doi: 10.16562/j.cnki.0256-1492.2019111101
Citation: WANG Xingxing, CAI Feng, WU Nengyou, LI Qing, SUN Zhilei, WU Linqiang. Research progress in seamount influence on depositional processes and evolution of deep-water bottom currents[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 68-78. doi: 10.16562/j.cnki.0256-1492.2019111101

Research progress in seamount influence on depositional processes and evolution of deep-water bottom currents

  • Seamount is a kind of tectonic geomorphological features widely distributed in the deep sea around the world, where bottom currents persistently exist, thus the interactions between seamounts and bottom currents are very common and will bring about non-negligible influence on deep-water sedimentation and their evolution. This study summarized the global researches on the deep water sedimentation by bottom currents around seamounts, suggesting that deep-water bottom-current hydrodynamics would change under the direct or indirect influence of seamounts, including the changing in flow paths, generation of secondary bottom currents, and variation in ecosystems. Consequently, deep-water sedimentary morphologies and lithofacies would display special distribution patterns. With the evolution of bottom-current hydrodynamics and sedimentary morphologies, deep water sedimentation processes and associated responses would change as well. In summary, bottom currents are complex and special around seamounts, resulting in sedimentary morphologies and lithofacies features as well as distribution patterns differing from those on the open slope. Thus, the sedimentary morphologies and lithofacies formed under bottom currents around seamounts have very particular implications for basin structures and palaeoceanography evolution. However, there is still lack of study concerning the coupling relationship between seamounts and deep water sedimentation processes, greatly limiting deep-sea resource exploration and geo-hazard study, thus more attention is required to be paid to the relationships in the future research of deep-water sedimentology.

  • 加载中
  • [1] Wessel P, Sandwell D T, Kim S S. The global seamount census [J]. Oceanography, 2010, 23(1): 24-33. doi: 10.5670/oceanog.2010.60

    CrossRef Google Scholar

    [2] Kim S S, Wessel P. New global seamount census from altimetry-derived gravity data [J]. Geophysical Journal International, 2011, 186(2): 615-631. doi: 10.1111/j.1365-246X.2011.05076.x

    CrossRef Google Scholar

    [3] Hernández-Molina F J, Soto M, Piola A R, et al. Depositional system along the Uruguayan continental margin: sedimentary, oceanographic and paleoceanographic implications [J]. Marine Geology, 2016, 378: 333-349. doi: 10.1016/j.margeo.2015.10.008

    CrossRef Google Scholar

    [4] Zhang X, Boyer D L. Current deflections in the vicinity of multiple seamounts [J]. Journal of Physical Oceanography, 1991, 21(8): 1122-1138. doi: 10.1175/1520-0485(1991)021<1122:CDITVO>2.0.CO;2

    CrossRef Google Scholar

    [5] Hernández-Molina F J, Larter R D, Rebesco M, et al. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: stratigraphic evidence from a contourite sedimentary tail [J]. Marine Geology, 2006, 228(1-4): 93-116. doi: 10.1016/j.margeo.2005.12.010

    CrossRef Google Scholar

    [6] Turnewitsch R, Falahat S, Nycander J, et al. Deep-sea fluid and sediment dynamics—Influence of hill-to seamount-scale seafloor topography [J]. Earth-Science Reviews, 2013, 127: 203-241. doi: 10.1016/j.earscirev.2013.10.005

    CrossRef Google Scholar

    [7] Chen H, Zhang W, Xie X, et al. Sediment dynamics driven by contour currents and mesoscale eddies along continental slope: A case study of the northern South China Sea [J]. Marine Geology, 2019, 409: 48-66. doi: 10.1016/j.margeo.2018.12.012

    CrossRef Google Scholar

    [8] Heezen B C, Hollister C D. Deep sea current evidence from abyssal sediments [J]. Marine Geology, 1964, 1(2): 141-174. doi: 10.1016/0025-3227(64)90012-X

    CrossRef Google Scholar

    [9] Zenk M. Abyssal and Contour Currents[M]//Rebesco M, Camerlenghi A, eds. Contourites. Amsterdam, Elsevier, 2008: 37-57.

    Google Scholar

    [10] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义—国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12):1287-1296 doi: 10.11867/j.issn.1001-8166.2017.12.1287

    CrossRef Google Scholar

    ZHAO Yulong, LIU Zhifei. Spatial distribution of contourites in global ocean and its paleoclimatic significance - The contribution of international ocean drilling to the studies of contourites [J]. Advances in Earth Science, 2017, 32(12): 1287-1296. doi: 10.11867/j.issn.1001-8166.2017.12.1287

    CrossRef Google Scholar

    [11] Rebesco M, Hernández-Molina F J, Van Rooij D, et al. Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations [J]. Marine Geology, 2014, 352: 111-154. doi: 10.1016/j.margeo.2014.03.011

    CrossRef Google Scholar

    [12] Thran A C, Dutkiewicz A, Spence P, et al. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model [J]. Earth and Planetary Science Letters, 2018, 489: 228-240. doi: 10.1016/j.jpgl.2018.02.044

    CrossRef Google Scholar

    [13] Knutz P C. Paleoceanographic significance of contourite drifts[M]// In: Rebesco M, Camerlenghi A (Eds.). Contourites. Developments in Sedimentology, 60. Elsevier, Amsterdam, 2008: 511-535.

    Google Scholar

    [14] Viana A R, Almeida W Jr, Nunes M C V, et al. The economic importance of contourites [J]. Geological Society of London Special Publication, 2007, 276(1): 1-23. doi: 10.1144/GSL.SP.2007.276.01.01

    CrossRef Google Scholar

    [15] Brackenridge R E, Stow D A V, Hernández-Molina F J, et al. Textural characteristics and facies of sand-rich contourite depositional systems [J]. Sedimentology, 2018, 65(7): 2223-2252. doi: 10.1111/sed.12463

    CrossRef Google Scholar

    [16] Hodgson D M. Distribution and origin of hydbrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa [J]. Marine and Petroleum Geology, 2009, 26: 1940-1956. doi: 10.1016/j.marpetgeo.2009.02.011

    CrossRef Google Scholar

    [17] Jobe Z, Sylvester Z, Pittaluga M B, et al. Facies architecture of submarine channel deposits on the western Niger Delta slope: Implications for grain-size and density stratification in turbidity currents [J]. Journal of Geophysical Research: Earth Surface, 2017, 122: 473-491. doi: 10.1002/2016JF003903

    CrossRef Google Scholar

    [18] Taylor G I. Experiments on the motion of solid bodies in rotating fluids [J]. Proceedings of the Royal Society, 1923, 104: 213-218.

    Google Scholar

    [19] Boyer D L, Zhang X. Motion of oscillatory currents past isolated topography [J]. Journal of Physical Oceanography, 1990, 20(9): 1425-1448. doi: 10.1175/1520-0485(1990)020<1425:MOOCPI>2.0.CO;2

    CrossRef Google Scholar

    [20] Bograd S J, Rabinovich A B, LeBlond P H, et al. Observations of seamount‐attached eddies in the North Pacific [J]. Journal of Geophysical Research: Oceans, 1997, 102(C6): 12441-12456. doi: 10.1029/97JC00585

    CrossRef Google Scholar

    [21] Chapman D C, Haidvogel D B. Formation of Taylor caps over a tall isolated seamount in a stratified ocean [J]. Geophysical and Astrophysical Fluid Dynamics, 1992, 62: 31-65.

    Google Scholar

    [22] Roden G I. Effects of seamount chains on ocean circulation and thermohaline structure[C]//In: Keating B H, et al. (Ed.). Seamounts, Islands and Atolls AGU Geophys. Monograph, 1987, 96: 335-354.

    Google Scholar

    [23] Roden G I. Mesoscale flow and thermohaline structure around Fieberling Seamount [J]. Journal of Geophysical Research, 1991, 96(C9): 16653-16672. doi: 10.1029/91JC01747

    CrossRef Google Scholar

    [24] Chapman D C. Enhanced subinertial diurnal tides over isolated topographic features [J]. Deep-sea Research, 1989, 36: 815-824. doi: 10.1016/0198-0149(89)90030-7

    CrossRef Google Scholar

    [25] Genin A, Noble M, Lonsdale P F. Tidal currents and anticyclonic motions on two North Pacific seamounts [J]. Deep-sea Research, 1989, 36(12): 1803-1815. doi: 10.1016/0198-0149(89)90113-1

    CrossRef Google Scholar

    [26] Noble M, Mullineaux L S. Internal tidal currents over the summit of cross seamount [J]. Deep-sea research, 1989, 36: 1791-1802. doi: 10.1016/0198-0149(89)90112-X

    CrossRef Google Scholar

    [27] Holloway P E, Merrifield M A. Internal tide generation by seamounts, ridges, and islands [J]. Journal of Geophysical Research, 1999, 104(C11): 25937-25951. doi: 10.1029/1999JC900207

    CrossRef Google Scholar

    [28] Kasahara A. A mechanism of deep-ocean mixing due to near-inertial waves generated by flow over bottom topography [J]. Dyn Atmos. Oceans, 2010, 49: 124-140. doi: 10.1016/j.dynatmoce.2009.02.002

    CrossRef Google Scholar

    [29] Gill A E, Atmosphere-Ocean Dynamics[M]. Academic Press, San Diego, 1982: 662.

    Google Scholar

    [30] Zhang X, Boye D L. Laboratory study of rotating, stratified, oscillatory flow over a seamount [J]. Journal of Physical Oceanography, 1993, 23(6): 1122-1141. doi: 10.1175/1520-0485(1993)023<1122:LSORSO>2.0.CO;2

    CrossRef Google Scholar

    [31] Goldner D R, Chapman D C. Flow and particle motion induced above a tall seamount by steady and tidal background currents [J]. Deep-sea Research, 1997, 144(5): 719-744.

    Google Scholar

    [32] 刘长建, 庄伟, 夏华永, 等. 2009-2010年冬季南海东北部中尺度过程观测[J]. 海洋学报, 2012, 34(1):8-16

    Google Scholar

    LIU Changjian, ZHUANG Wei, XIA Huayong, et al. Mesoscale observation in the northeast South China Sea during winter 2009-2010 [J]. Acta Oceanologica Sinica, 2012, 34(1): 8-16.

    Google Scholar

    [33] 魏泽勋, 郑全安, 杨永增, 等. 中国物理海洋学研究70年:发展历程、学术成就概览[J]. 海洋学报, 2019, 41(10):23-64

    Google Scholar

    WEI Zexun, ZHENG Quanan, YANG Yongzeng, et al. Physical oceanography research in China over past 70 years: Overview of development history and academic achievements [J]. Acta Oceanologica Sinica, 2019, 41(10): 23-64.

    Google Scholar

    [34] Adams D K, McGillicuddy D J, Zamudio L, et al. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents [J]. Science, 2011, 332(6029): 580-583. doi: 10.1126/science.1201066

    CrossRef Google Scholar

    [35] Zhang Y W, Liu Z F, Zhao Y L, et al. Mesoscale eddies transport deep-sea sediments [J]. Scientific Reports, 2014, 4: 5937.

    Google Scholar

    [36] Zhao Y, Liu Z, Zhang Y, et al. In situ observation of contour currents in the northern South China Sea: Applications for deepwater sediment transport [J]. Earth and Planetary Science Letters, 2015, 430: 477-485. doi: 10.1016/j.jpgl.2015.09.008

    CrossRef Google Scholar

    [37] Rogerson M, Schonfeld J, Leng M J, et al. Qualitative and quantitative approaches in palaeohydrography: a case study from core-top parameters in the Gulf of Cadiz [J]. Marine Geology, 2011, 280(1): 150-167.

    Google Scholar

    [38] García M, Hernández-Molina F J, Llave E, et al. Contourite erosive features caused by the Mediterranean Outflow Water in the Gulf of Cadiz: Quaternary tectonic and oceanographic implications [J]. Marine Geology, 2009, 257(1-4): 24-40. doi: 10.1016/j.margeo.2008.10.009

    CrossRef Google Scholar

    [39] Roberts D G, Hogg N G, Bishop D G, et al. Sediment distribution around moated seamounts in the Rockall Trough [J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(3): 175-184. doi: 10.1016/0011-7471(74)90057-6

    CrossRef Google Scholar

    [40] Howe J A, Stoker M S, Masson D G, et al. Seabed morphology and the bottom-current pathways around Rosemary Bank seamount, northern Rockall Trough, North Atlantic [J]. Marine and Petroleum Geology, 2006, 23(2): 165-181. doi: 10.1016/j.marpetgeo.2005.08.003

    CrossRef Google Scholar

    [41] Davies T A, Laughton A S. Sedimentary Processes in the North Atlantic[C]// In: Laughton A S, Berggren W A (Eds.). Initial Reports of Deep Sea Drilling Project, 12. U.S. Government Printing Office, Washington D C, 1972: 905-934.

    Google Scholar

    [42] 陈慧, 解习农, 毛凯楠. 南海北缘一统暗沙附近深水等深流沉积体系特征[J]. 地球科学—中国地质大学学报, 2015, 40(4):733-743 doi: 10.3799/dqkx.2015.061

    CrossRef Google Scholar

    CHEN Hui, XIE Xinong, MAO Kainan. Deep-water contourite depositional system in vicinity of Yi’tong Shoal on Northern Margin of the South China Sea [J]. Earth Science – Journal of China University of Geoscience, 2015, 40(4): 733-743. doi: 10.3799/dqkx.2015.061

    CrossRef Google Scholar

    [43] Hernández-Molina F J, Campbell S, Badalini G, et al. Large bedforms on contourite terraces: Sedimentary and conceptual implications [J]. Geology, 2018, 46(1): 27-30. doi: 10.1130/G39655.1

    CrossRef Google Scholar

    [44] Stow D A V, Hernández-Molina F J, Llave E, et al. The Cadiz Contourite Channel: Sandy contourites, bedforms and dynamic current interaction [J]. Marine Geology, 2013, 343: 99-114. doi: 10.1016/j.margeo.2013.06.013

    CrossRef Google Scholar

    [45] Pratt R M. Great meteor seamount [J]. Deep-sea Research, 1963, 10: 17-25.

    Google Scholar

    [46] Karig D E, Peterson M N A, Shor G G. Sediment-capped guyots in the Mid-Pacific Mountains [J]. Deep-Sea Research, 1970, 17: 373-378.

    Google Scholar

    [47] Levin L A, Nittrouer C A. Textural characteristics of sediments on deep seamounts in the eastern Pacific Ocean between 10°N and 30°N[C]// In: Keating B, Fryer P, Batiza R, et al(eds). Geophysical Monograph 43. American Geophysical Union, Washington, 1987: 187-203.

    Google Scholar

    [48] Thiéblemont A, Hernández-Molina F J, Miramontes E, et al. Contourite depositional systems along the Mozambique channel: The interplay between bottom currents and sedimentary processes [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 147: 79-99. doi: 10.1016/j.dsr.2019.03.012

    CrossRef Google Scholar

    [49] Wang X, Zhuo H, Wang Y, et al. Controls of contour currents on intra-canyon mixed sedimentary processes: Insights from the Pearl River Canyon, northern South China Sea [J]. Marine Geology, 2018, 406: 193-213. doi: 10.1016/j.margeo.2018.09.016

    CrossRef Google Scholar

    [50] Richardson P L. Anticyclonic eddies generated near Corner Rise seamounts [J]. Journal of Marine Research, 1980, 38: 673-686.

    Google Scholar

    [51] Rogers A D. The Biology of seamounts [J]. Advances in Marine Biology, 1994, 30(1): 305-350.

    Google Scholar

    [52] Bank J J, Kim D H, Chun J H. Gas hydrate occurrences and their relation to host sediment properties: Results from second Uleung Basin Gas hydrate drilling expedition, East Sea [J]. Marine and Petroleum Geology, 2013, 47: 21-29. doi: 10.1016/j.marpetgeo.2013.05.006

    CrossRef Google Scholar

    [53] 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学, 2013, 38(5):907-915 doi: 10.3799/dqkx.2013.089

    CrossRef Google Scholar

    CHEN Fang, SU Xin, LU Hongfeng, et al. Relations between biogenic component (Foraminifera) and Highly saturated gas hydrates distribution from Shenhu Area, Northern South China Sea [J]. Earth Science – Journal of China University of Geoscience, 2013, 38(5): 907-915. doi: 10.3799/dqkx.2013.089

    CrossRef Google Scholar

    [54] 吴能友, 孙治雷, 卢建国, 等. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质, 2019, 39(5):23-35

    Google Scholar

    WU Nengyou, SUN Zhilei, LU Jianguo, et al. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35.

    Google Scholar

    [55] Chen H, Xie X, Van Rooij D, et al. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea [J]. Marine Geology, 2014, 355: 36-53. doi: 10.1016/j.margeo.2014.05.008

    CrossRef Google Scholar

    [56] Vandorpe T, Van Rooij D, De Haas H. Stratigraphy and paleoceanography of a topography-controlled contourite drift in the Pen Duick area, southern Gulf of Cádiz [J]. Marine Geology, 2014, 349: 136-151. doi: 10.1016/j.margeo.2014.01.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(3384) PDF downloads(166) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint