2020 Vol. 40, No. 5
Article Contents

LI Yanlong, CHEN Qiang, LIU Changling, WU Nengyou, SUN Jianye, SHEN Zhicong, ZHANG Minsheng, HU Gaowei. Development of engineering-geological parameters evaluation system for hydrate-bearing sediment and its functional verification[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 192-200. doi: 10.16562/j.cnki.0256-1492.2019110401
Citation: LI Yanlong, CHEN Qiang, LIU Changling, WU Nengyou, SUN Jianye, SHEN Zhicong, ZHANG Minsheng, HU Gaowei. Development of engineering-geological parameters evaluation system for hydrate-bearing sediment and its functional verification[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 192-200. doi: 10.16562/j.cnki.0256-1492.2019110401

Development of engineering-geological parameters evaluation system for hydrate-bearing sediment and its functional verification

More Information
  • Engineering-geological parameters are crucial for evaluation of geohazard potential in marine hydrate exploitation. The combination of piezocone penetration and vane shear test may help gain longitudinally continuous and reliable parameters for hydrate reservoir, which has great perspective in integrated engineering and geological field survey. However, application of these techniques to marine hydrate survey has remained vacant so far. To better understand the penetration or shearing behaviors and their influencing factors in hydrate-bearing sediment (HBS), we developed a novel engineering-geological parameters evaluation system, which may satisfy the need of five-bridge piezocone penetration test and vane shear test. The tip resistance, side frictional resistance, excess pore pressure, electrical resistance, and video along the penetration path could be obtained through five-bridge piezocone penetration test. The method of electrical resistivity tomography is firstly combined with piezocone penetration and vane shear technology in this system to explain the relationships between engineering geological parameters and hydrate saturation. The sandy sediment and clayey-silt sediment (free of hydrate) are involved to verify the functions of the system. The results show favorable fitness with the field-obtained data. Repeated experiments show high reproducibility of the data. This system proved the possibility of establishing quantitative evaluation models of engineering geological parameters in HBS, and also provided a basic platform for novel probing device test in the integrative engineering-and-geological hydrate survey.

  • 加载中
  • [1] Li Y L, Wan Y Z, Chen Q, et al. Large borehole with multi-lateral branches: A novel solution for exploitation of clayey silt hydrate [J]. China Geology, 2019, 2(3): 333-341.

    Google Scholar

    [2] Li X S, Xu C G, Zhang Y, et al. Investigation into gas production from natural gas hydrate: A review [J]. Applied Energy, 2016, 172: 286-322. doi: 10.1016/j.apenergy.2016.03.101

    CrossRef Google Scholar

    [3] 万义钊, 吴能友, 胡高伟, 等. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 2018, 38(4):117-128

    Google Scholar

    WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea [J]. Natural Gas Industry, 2018, 38(4): 117-128.

    Google Scholar

    [4] Li Y L, Wu N Y, Ning F L, et al. A sand-production control system for gas production from clayey silt hydrate reservoirs [J]. China Geology, 2019, 2: 121-132. doi: 10.31035/cg2018081

    CrossRef Google Scholar

    [5] 李彦龙, 胡高伟, 刘昌岭, 等. 天然气水合物开采井防砂充填层砾石尺寸设计方法[J]. 石油勘探与开发, 2017, 44(6):961-966

    Google Scholar

    LI Yanlong, HU Gaowei, LIU Changling, et al. Gravel sizing method for sand control packing in hydrate production test wells [J]. Petroleum Exploration and Development, 2017, 44(6): 961-966.

    Google Scholar

    [6] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5):1-11

    Google Scholar

    WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 1-11.

    Google Scholar

    [7] 刘昌岭, 李彦龙, 孙建业, 等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5):12-26

    Google Scholar

    LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 12-26.

    Google Scholar

    [8] Hsiung K H, Saito S, Kanamatsu T, et al. Regional stratigraphic framework and gas hydrate occurrence offshore eastern India: Core-log-seismic integration of National Gas Hydrate Program Expedition 02(NGHP-02) Area-B drill sites [J]. Marine & Petroleum Geology, 2019, 108: 206-215.

    Google Scholar

    [9] Zhang Z J, Wright C S. Quantitative interpretations and assessments of a fractured gas hydrate reservoir using three-dimensional seismic and LWD data in Kutei basin, East Kalimantan, offshore Indonesia [J]. Marine & Petroleum Geology, 2017, 84: 257-273.

    Google Scholar

    [10] Merey Ş. Evaluation of drilling parameters in gas hydrate exploration wells [J]. Journal of Petroleum Science and Engineering, 2019, 172: 855-877. doi: 10.1016/j.petrol.2018.08.079

    CrossRef Google Scholar

    [11] 张炜, 邵明娟, 姜重昕, 等. 世界天然气水合物钻探历程与试采进展[J]. 海洋地质与第四纪地质, 2018, 38(5):1-13

    Google Scholar

    ZHANG Wei, SHAO Mingjuan, JIANG Chongxin, et al. World progress of drilling and production test of natural gas hydrate [J]. Marine Geology & Quaternary Geology, 2018, 38(5): 1-13.

    Google Scholar

    [12] Cheng W, Ning F L, Sun J X, et al. A porothermoelastic wellbore stability model for riserless drilling through gas hydrate-bearing sediments in the Shenhu area of the South China Sea [J]. Journal of Natural Gas Science and Engineering, 2019, 72: 103036. doi: 10.1016/j.jngse.2019.103036

    CrossRef Google Scholar

    [13] Li Y L, Liu C L, Liu L L, et al. Experimental study on evolution behaviors of triaxial-shearing parameters for hydrate-bearing intermediate fine sediment [J]. Advances in Geo-energy Research, 2018, 2(1): 43-52. doi: 10.26804/ager.2018.01.04

    CrossRef Google Scholar

    [14] Miller G A, Tan N K, Collins R W, et al. Cone penetration testing in unsaturated soils [J]. Transportation Geotechnics, 2018, 17: 85-99. doi: 10.1016/j.trgeo.2018.09.008

    CrossRef Google Scholar

    [15] Bol W, Önalp A, Özocak A, et al. Estimation of the undrained shear strength of Adapazari fine grained soils by cone penetration test [J]. Engineering Geology, 2019, 261: 105277. doi: 10.1016/j.enggeo.2019.105277

    CrossRef Google Scholar

    [16] Liu Z C, Wei H Z, Peng L, et al. An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: The direct shear test [J]. Journal of Petroleum Science and Engineering, 2017, 149: 56-64. doi: 10.1016/j.petrol.2016.09.040

    CrossRef Google Scholar

    [17] Dong L, Li Y L, Liao H L, et al. Strength estimation for hydrate-bearing sediments based on triaxial shearing tests [J]. Journal of Petroleum Science and Engineering, 2020, 184: 106478. doi: 10.1016/j.petrol.2019.106478

    CrossRef Google Scholar

    [18] Dong L, Li Y L, Liu C L, et al. Mechanical properties of methane hydrate-bearing interlayered sediments [J]. Journal of Ocean University of China, 2019, 18(6): 1344-1350. doi: 10.1007/s11802-019-3929-z

    CrossRef Google Scholar

    [19] 李彦龙, 刘昌岭, 刘乐乐, 等. 含甲烷水合物松散沉积物的力学特性[J]. 中国石油大学学报: 自然科学版, 2017, 41(3):105-113

    Google Scholar

    LI Yanlong, LIU Changling, LIU Lele, et al. Mechanical properties of methane hydrate-bearing unconsolidated sediments [J]. Journal of China University of Petroleum: Edition of Natural Science, 2017, 41(3): 105-113.

    Google Scholar

    [20] Sultan N, Voisset M, Marsset T, et al. Detection of free gas and gas hydrate based on 3D seismic data and cone penetration testing: An example from the Nigerian Continental Slope [J]. Marine Geology, 2007, 240(1-4): 235-255. doi: 10.1016/j.margeo.2007.02.012

    CrossRef Google Scholar

    [21] Pérez-Corona M, García J A, Taller G, et al. The cone penetration test and 2D imaging resistivity as tools to simulate the distribution of hydrocarbons in soil [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2016, 91: 87-92. doi: 10.1016/j.pce.2015.09.006

    CrossRef Google Scholar

    [22] 李彦龙, 刘昌岭, 陈强, 等. 水合物沉积物不排水抗剪强度连续测量装置及方法: 中国, 108776071A[P]. 2018-11-09.

    Google Scholar

    LI Yanlong, LIU Changling, CHEN Qiang, et al. Continuous shearing test apparatus and method for hydrate bearing sediment: CN, 108776071A[P]. 2018-11-09.

    Google Scholar

    [23] 陈强, 刘昌岭, 李彦龙, 等. 含水合物沉积物工程静探参数模拟装置及方法: 中国, 208125729U[P]. 2018-11-20.

    Google Scholar

    CHEN Qiang, LIU Changling, LI Yanlong, et al. Piezocone penetration parameters test apparatus and method for hydrate bearing sediment, CN, 208125729U[P]. 2018-11-20.

    Google Scholar

    [24] 刘昌岭, 李彦龙, 刘乐乐, 等. 天然气水合物钻采一体化模拟实验系统及降压法开采初步实验[J]. 天然气工业, 2019, 39(6):165-172

    Google Scholar

    LIU Changling, LI Yanlong, LIU Lele, et al. An integrated experimental system for gas hydrate drilling and production and a preliminary experiment of the depressurization method [J]. Natural Gas Industry, 2019, 39(6): 165-172.

    Google Scholar

    [25] 李彦龙, 吴能友, 陈强, 等. 海底泥底辟外围水合物同心带状成藏过程的可视化再现[C]//中国矿物岩石地球化学学会第17届学术年会论文摘要集. 2019.

    Google Scholar

    LI Yanlong, WU Nengyou, CHEN Qiang, et al. Visual reproduction of hydrate distribution around mud diapirs[C]//Abstract for the 17th annual conference of Mineral and rock Geochemical Society of China, 2019.

    Google Scholar

    [26] 孙海亮, 李彦龙, 刘昌岭, 等. 电阻层析成像技术及其在水合物开采模拟实验中的应用[J]. 计量学报, 2019, 40(3):455-461

    Google Scholar

    SUN Hailiang, LI Yanlong, LIU Changling, et al. Electrical resistance tomography and the application in the simulation experiment of hydrate mining [J]. Acta Metrologica Sinica, 2019, 40(3): 455-461.

    Google Scholar

    [27] 胡高伟, 李彦龙, 吴能友, 等. 神狐海域W18/19站位天然气水合物上覆层不排水抗剪强度预测[J]. 海洋地质与第四纪地质, 2017, 37(5):151-158

    Google Scholar

    HU Gaowei, LI Yanlong, WU Nengyou, et al. Undrained shear strength estimation of the cover layer of hydrate at Site W18/19 of Shenhu area [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 151-158.

    Google Scholar

    [28] 李彦龙, 陈强, 胡高伟, 等. 神狐海域W18/19区块水合物上覆层水平渗透系数分布[J]. 海洋地质与第四纪地质, 2019, 39(2):157-163

    Google Scholar

    LI Yanlong, CHEN Qiang, HU Gaowei, et al. Distribution of horizontal permeability coefficient of the cover layer of HBS at Site W18/19 of Shenhu area [J]. Marine Geology & Quaternary Geology, 2019, 39(2): 157-163.

    Google Scholar

    [29] Li Y L, Hu G W, Wu N Y, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea [J]. Acta Oceanologica Sinica, 2019, 38(3): 114-123. doi: 10.1007/s13131-019-1404-8

    CrossRef Google Scholar

    [30] 靳佳澎, 王秀娟, 陈端新, 等. 基于测井与地震多属性分析神狐海域天然气水合物分布特征[J]. 海洋地质与第四纪地质, 2017, 37(5):122-130

    Google Scholar

    JIN Jiapeng, WANG Xiujuan, CHEN Duanxin, et al. Distribution of gas hydrate in Shenhu area: identified with well log and seismic multi-attributes [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 122-130.

    Google Scholar

    [31] 李彦龙, 孙海亮, 孟庆国, 等. 沉积物中天然气水合物生成过程的二维电阻层析成像观测[J]. 天然气工业, 2019, 39(10):132-138

    Google Scholar

    LI Yanlong, SUN Hailiang, MENG Qingguo, et al. 2-D electrical resistivity tomography assessment of hydrate formation in sandy sediments [J]. Natural Gas Industry, 2019, 39(10): 132-138.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(1367) PDF downloads(44) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint